20,711 research outputs found

    Using graphical models and multi-attribute utility theory for probabilistic uncertainty handling in large systems, with application to nuclear emergency management

    Get PDF
    Although many decision-making problems involve uncertainty, uncertainty handling within large decision support systems (DSSs) is challenging. One domain where uncertainty handling is critical is emergency response management, in particular nuclear emergency response, where decision making takes place in an uncertain, dynamically changing environment. Assimilation and analysis of data can help to reduce these uncertainties, but it is critical to do this in an efficient and defensible way. After briefly introducing the structure of a typical DSS for nuclear emergencies, the paper sets up a theoretical structure that enables a formal Bayesian decision analysis to be performed for environments like this within a DSS architecture. In such probabilistic DSSs many input conditional probability distributions are provided by different sets of experts overseeing different aspects of the emergency. These probabilities are then used by the decision maker (DM) to find her optimal decision. We demonstrate in this paper that unless due care is taken in such a composite framework, coherence and rationality may be compromised in a sense made explicit below. The technology we describe here builds a framework around which Bayesian data updating can be performed in a modular way, ensuring both coherence and efficiency, and provides sufficient unambiguous information to enable the DM to discover her expected utility maximizing policy

    A hybrid and integrated approach to evaluate and prevent disasters

    Get PDF

    Bayesian decision support for complex systems with many distributed experts

    Get PDF
    Complex decision support systems often consist of component modules which, encoding the judgements of panels of domain experts, describe a particular sub-domain of the overall system. Ideally these modules need to be pasted together to provide a comprehensive picture of the whole process. The challenge of building such an integrated system is that, whilst the overall qualitative features are common knowledge to all, the explicit forecasts and their associated uncertainties are only expressed individually by each panel, resulting from its own analysis. The structure of the integrated system therefore needs to facilitate the coherent piecing together of these separate evaluations. If such a system is not available there is a serious danger that this might drive decision makers to incoherent and so indefensible policy choices. In this paper we develop a graphically based framework which embeds a set of conditions, consisting of the agreement usually made in practice of certain probability and utility models, that, if satisfied in a given context, are sufficient to ensure the composite system is truly coherent. Furthermore, we develop new message passing algorithms entailing the transmission of expected utility scores between the panels, that enable the uncertainties within each module to be fully accounted for in the evaluation of the available alternatives in these composite systems

    Modelling the reliability of search operations within the UK through Bayesian belief networks

    Get PDF
    This paper uses a Bayesian belief networks (BBN) methodology to assess the reliability of search and rescue (SAR) operations within the UK coastguard (maritime rescue) coordination centers. This is an extension of earlier work, which investigated the rationale of the government's decision to close a number of coordination centers. The previous study made use of secondary data sources and employed a binary logistic regression methodology to support the analysis. This study focused on the collection of primary data through a structured elicitation process, which resulted in the construction of a BBN. The main findings of the study are that approaches such as logistic regression are complementary to BBN's. The former provided a more objective assessment of associations between variables but was restricted in the level of detail that could be explicitly expressed within the model due to lack of available data. The latter method provided a much more detailed model but the validity of the numeric assessments was more questionable. Each method can be used to inform and defend the development of the other. The paper describes in detail the elicitation process employed to construct the BBN and reflects on the potential for bias

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    Intelligent Agents for Disaster Management

    No full text
    ALADDIN [1] is a multi-disciplinary project that is developing novel techniques, architectures, and mechanisms for multi-agent systems in uncertain and dynamic environments. The application focus of the project is disaster management. Research within a number of themes is being pursued and this is considering different aspects of the interaction between autonomous agents and the decentralised system architectures that support those interactions. The aim of the research is to contribute to building more robust multi-agent systems for future applications in disaster management and other similar domains
    • …
    corecore