14,572 research outputs found

    Emerging Search Regimes: Measuring Co-evolutions among Research, Science, and Society

    Full text link
    Scientometric data is used to investigate empirically the emergence of search regimes in Biotechnology, Genomics, and Nanotechnology. Complex regimes can emerge when three independent sources of variance interact. In our model, researchers can be considered as the nodes that carry the science system. Research is geographically situated with site-specific skills, tacit knowledge and infrastructures. Second, the emergent science level refers to the formal communication of codified knowledge published in journals. Third, the socio-economic dynamics indicate the ways in which knowledge production relates to society. Although Biotechnology, Genomics, and Nanotechnology can all be characterised by rapid growth and divergent dynamics, the regimes differ in terms of self-organization among these three sources of variance. The scope of opportunities for researchers to contribute within the constraints of the existing body of knowledge are different in each field. Furthermore, the relevance of the context of application contributes to the knowledge dynamics to various degrees

    Dynamic Animations of Journal Maps: Indicators of Structural Changes and Interdisciplinary Developments

    Full text link
    The dynamic analysis of structural change in the organization of the sciences requires methodologically the integration of multivariate and time-series analysis. Structural change--e.g., interdisciplinary development--is often an objective of government interventions. Recent developments in multi-dimensional scaling (MDS) enable us to distinguish the stress originating in each time-slice from the stress originating from the sequencing of time-slices, and thus to locally optimize the trade-offs between these two sources of variance in the animation. Furthermore, visualization programs like Pajek and Visone allow us to show not only the positions of the nodes, but also their relational attributes like betweenness centrality. Betweenness centrality in the vector space can be considered as an indicator of interdisciplinarity. Using this indicator, the dynamics of the citation impact environments of the journals Cognitive Science, Social Networks, and Nanotechnology are animated and assessed in terms of interdisciplinarity among the disciplines involved

    A Map of the Nanoworld: Sizing up the Science, Politics, and Business of the Infinitesimal

    Full text link
    Mapping out the eight main nodes of nanotechnology discourse that have emerged in the past decade, we explore how various scientific, social, and ethical islands of discussion have developed, been recognized, and are being continually renegotiated. We do so by (1) identifying the ways in which scientists, policy makers, entrepreneurs, educators, and environmental groups have drawn boundaries on issues relating to nanotechnology; (2) describing concisely the perspectives from which these boundaries are drawn; and (3) exploring how boundaries on nanotechnology are marked and negotiated by various nodes of nanotechnology discourse.Comment: 25 page

    Worldwide Scientific Research on Nanotechnology: A Bibliometric Analysis of Tendencies, Funding, and Challenges

    Full text link
    This document is the unedited Author¿s version of a Submitted Work that was subsequently accepted for publication in Journal of Agricultural and Food Chemistry, copyright © American Chemical Society after peer review. To access the final edited and published work see https://doi.org/10.1021/acs.jafc.0c02141.[EN] The main objective of this investigation was to analyze the scientific production in global research on nanotechnology, integrating scientific production, funding of studies, collaborations between countries, and the most cited publications. The source for obtaining the research papers for our analysis was the Science Citation Index Expanded from the Web of Science. A total of 3546 documents were extracted during the period of 1997-2018. Food science & technology, chemistry (applied and analytical), spectroscopy, and agriculture appeared as the main areas where the articles were published. Most prolific and cited journals were Analytical Methods, Journal of Agricultural and Food Chemistry, and Food Chemistry. The co-word analysis showed the relationships between "nanoparticles", which is the central word, and "silver nanoparticles", "delivery systems", and "zincnanoparticles". The most productive countries were China (1089 papers), the United States (523), Iran (427), and India (359). The main cited topics deal with the biomedical applications of nanoparticles, its synthesis from plants, and its applications in food science. The results highlight an important collaboration between institutions and countries. The availability of funding for research in nanotechnology was remarkable compared to other fields. The multidisciplinarity of the nanotechnology field is one of the main features as well as one of the central findings.Aleixandre-Tudó, JL.; Bolaños Pizarro, M.; Aleixandre Benavent, JL.; Aleixandre-Benavent, R. (2020). Worldwide Scientific Research on Nanotechnology: A Bibliometric Analysis of Tendencies, Funding, and Challenges. Journal of Agricultural and Food Chemistry. 68(34):9158-9170. https://doi.org/10.1021/acs.jafc.0c02141S915891706834Ranjan, S., Dasgupta, N., & Lichtfouse, E. (Eds.). (2016). Nanoscience in Food and Agriculture 1. Sustainable Agriculture Reviews. doi:10.1007/978-3-319-39303-2National Science and Technology Council (NSTC). National Nanotechnology Initiative Strategic Plan; NSTC: Washington, D.C., 2016; https://www.nano.gov/sites/default/files/pub_resource/2016-nni-strategic-plan.pdf (accessed June 11, 2020.Durán, N., & Marcato, P. D. (2012). Nanobiotechnology perspectives. Role of nanotechnology in the food industry: a review. International Journal of Food Science & Technology, 48(6), 1127-1134. doi:10.1111/ijfs.12027Chaudhry, Q., Castle, L., & Watkins, R. (Eds.). (2010). Nanotechnologies in Food. Nanoscience & Nanotechnology Series. doi:10.1039/9781847559883Duncan, T. V. (2011). Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 363(1), 1-24. doi:10.1016/j.jcis.2011.07.017Chen, W.-T., Chan, A., Jovic, V., Sun-Waterhouse, D., Murai, K., Idriss, H., & Waterhouse, G. I. N. (2014). Effect of the TiO2 Crystallite Size, TiO2 Polymorph and Test Conditions on the Photo-Oxidation Rate of Aqueous Methylene Blue. Topics in Catalysis, 58(2-3), 85-102. doi:10.1007/s11244-014-0348-7WATERHOUSE, G. (2004). Influence of catalyst morphology on the performance of electrolytic silver catalysts for the partial oxidation of methanol to formaldehyde. Applied Catalysis A: General, 266(2), 257-273. doi:10.1016/j.apcata.2004.02.015Chen, W.-T., Chan, A., Sun-Waterhouse, D., Moriga, T., Idriss, H., & Waterhouse, G. I. N. (2015). Ni/TiO2: A promising low-cost photocatalytic system for solar H2 production from ethanol–water mixtures. Journal of Catalysis, 326, 43-53. doi:10.1016/j.jcat.2015.03.008Allen, M. W., Zemlyanov, D. Y., Waterhouse, G. I. N., Metson, J. B., Veal, T. D., McConville, C. F., & Durbin, S. M. (2011). Polarity effects in the x-ray photoemission of ZnO and other wurtzite semiconductors. Applied Physics Letters, 98(10), 101906. doi:10.1063/1.3562308Leveneur, J., Waterhouse, G. I. N., Kennedy, J., Metson, J. B., & Mitchell, D. R. G. (2011). Nucleation and Growth of Fe Nanoparticles in SiO2: A TEM, XPS, and Fe L-Edge XANES Investigation. The Journal of Physical Chemistry C, 115(43), 20978-20985. doi:10.1021/jp206357cWaterhouse, G. I. N., Chen, W.-T., Chan, A., Jin, H., Sun-Waterhouse, D., & Cowie, B. C. C. (2015). Structural, Optical, and Catalytic Support Properties of γ-Al2O3 Inverse Opals. The Journal of Physical Chemistry C, 119(12), 6647-6659. doi:10.1021/acs.jpcc.5b00437Murdoch, M., Waterhouse, G. I. N., Nadeem, M. A., Metson, J. B., Keane, M. A., Howe, R. F., … Idriss, H. (2011). The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nature Chemistry, 3(6), 489-492. doi:10.1038/nchem.1048Sharma, M., Waterhouse, G. I. N., Loader, S. W. C., Garg, S., & Svirskis, D. (2013). High surface area polypyrrole scaffolds for tunable drug delivery. International Journal of Pharmaceutics, 443(1-2), 163-168. doi:10.1016/j.ijpharm.2013.01.006Yabutani, T., Waterhouse, G. I. N., Sun-Waterhouse, D., Metson, J. B., Iinuma, A., Thuy, L. T. X., … Motonaka, J. (2014). Facile synthesis of platinum nanoparticle-containing porous carbons, and their application to amperometric glucose biosensing. Microchimica Acta, 181(15-16), 1871-1878. doi:10.1007/s00604-014-1270-1Suominen, A., Li, Y., Youtie, J., & Shapira, P. (2016). A bibliometric analysis of the development of next generation active nanotechnologies. Journal of Nanoparticle Research, 18(9). doi:10.1007/s11051-016-3578-8Sahoo, S. K., Parveen, S., & Panda, J. J. (2007). The present and future of nanotechnology in human health care. Nanomedicine: Nanotechnology, Biology and Medicine, 3(1), 20-31. doi:10.1016/j.nano.2006.11.008Celik, I., Mason, B. E., Phillips, A. B., Heben, M. J., & Apul, D. (2017). Environmental Impacts from Photovoltaic Solar Cells Made with Single Walled Carbon Nanotubes. Environmental Science & Technology, 51(8), 4722-4732. doi:10.1021/acs.est.6b06272Xiao, H., Ai, Z., & Zhang, L. (2009). Nonaqueous Sol−Gel Synthesized Hierarchical CeO2 Nanocrystal Microspheres as Novel Adsorbents for Wastewater Treatment. The Journal of Physical Chemistry C, 113(38), 16625-16630. doi:10.1021/jp9050269Crane, R. A., & Scott, T. B. (2012). Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology. Journal of Hazardous Materials, 211-212, 112-125. doi:10.1016/j.jhazmat.2011.11.073KOSTOFF, R., TSHITEYA, R., PFEIL, K., HUMENIK, J., & KARYPIS, G. (2005). Power source roadmaps using bibliometrics and database tomography. Energy, 30(5), 709-730. doi:10.1016/j.energy.2004.04.058Heersmink, R., van den Hoven, J., van Eck, N. J., & van den Berg, J. (2011). Bibliometric mapping of computer and information ethics. Ethics and Information Technology, 13(3), 241-249. doi:10.1007/s10676-011-9273-7Moed, H. F., De Bruin, R. E., & Van Leeuwen, T. N. (1995). New bibliometric tools for the assessment of national research performance: Database description, overview of indicators and first applications. Scientometrics, 33(3), 381-422. doi:10.1007/bf02017338Kostoff, R. N. (2002). Scientometrics, 53(1), 49-71. doi:10.1023/a:1014831920172Waltman, L. (2016). A review of the literature on citation impact indicators. Journal of Informetrics, 10(2), 365-391. doi:10.1016/j.joi.2016.02.007Aleixandre-Tudó, J. L., Castelló-Cogollos, L., Aleixandre, J. L., & Aleixandre-Benavent, R. (2019). Tendencies and Challenges in Worldwide Scientific Research on Probiotics. Probiotics and Antimicrobial Proteins, 12(3), 785-797. doi:10.1007/s12602-019-09591-0Rueda, G.; Gerdsri, P.; Kocaoglu, D. F. Bibliometrics and Social Network Analysis of the Nanotechnology Field. PICMET 2007 Proceedings; Portland, OR, Aug 5–9, 2007.Aleixandre-Tudó, J. L., Castelló-Cogollos, L., Aleixandre, J. L., & Aleixandre-Benavent, R. (2019). Renewable energies: Worldwide trends in research, funding and international collaboration. Renewable Energy, 139, 268-278. doi:10.1016/j.renene.2019.02.079Batagelj, V., & Mrvar, A. (2002). Pajek— Analysis and Visualization of Large Networks. Lecture Notes in Computer Science, 477-478. doi:10.1007/3-540-45848-4_54Chiu, W.-T., & Ho, Y.-S. (2007). Bibliometric analysis of tsunami research. Scientometrics, 73(1), 3-17. doi:10.1007/s11192-005-1523-1Aleixandre-Benavent, R., Aleixandre-Tudó, J. L., Castelló-Cogollos, L., & Aleixandre, J. L. (2018). Trends in global research in deforestation. A bibliometric analysis. Land Use Policy, 72, 293-302. doi:10.1016/j.landusepol.2017.12.060Chandran, S. P., Chaudhary, M., Pasricha, R., Ahmad, A., & Sastry, M. (2006). Synthesis of Gold Nanotriangles and Silver Nanoparticles Using Aloe vera Plant Extract. Biotechnology Progress, 22(2), 577-583. doi:10.1021/bp0501423Porter, A. L., Youtie, J., Shapira, P., & Schoeneck, D. J. (2007). Refining search terms for nanotechnology. Journal of Nanoparticle Research, 10(5), 715-728. doi:10.1007/s11051-007-9266-yDuran, E., Astroza, K., Ocaranza-Ozimica, J., Peñailillo, D., Pavez-Soto, I., & Ramirez-Tagle, R. (2019). Scientific Research on Nanotechnology in Latin American Journals Published in SciELO: Bibliometric Analysis of Gender Differences. NanoEthics, 13(2), 113-118. doi:10.1007/s11569-019-00344-5Braun, T., Schubert, A., & Zsindely, S. (1997). Nanoscience and nanotecnology on the balance. Scientometrics, 38(2), 321-325. doi:10.1007/bf02457417Hullmann, A., & Meyer, M. (2003). Publications and patents in nanotechnology. Scientometrics, 58(3), 507-527. doi:10.1023/b:scie.0000006877.45467.a7Schummer, J. (2004). Multidisciplinarity, interdisciplinarity, and patterns of research collaboration in nanoscience and nanotechnology. Scientometrics, 59(3), 425-465. doi:10.1023/b:scie.0000018542.71314.38Arora, S. K., Youtie, J., Carley, S., Porter, A. L., & Shapira, P. (2013). Measuring the development of a common scientific lexicon in nanotechnology. Journal of Nanoparticle Research, 16(1). doi:10.1007/s11051-013-2194-0Munoz-Sandoval, E. (2013). Trends in nanoscience, nanotechnology, and carbon nanotubes: a bibliometric approach. Journal of Nanoparticle Research, 16(1). doi:10.1007/s11051-013-2152-xRoco, M. C., Mirkin, C. A., & Hersam, M. C. (2011). Nanotechnology research directions for societal needs in 2020: summary of international study. Journal of Nanoparticle Research, 13(3), 897-919. doi:10.1007/s11051-011-0275-5Pardo-Guerra, J. P. (2011). Mapping emergence across the Atlantic: Some (tentative) lessons on nanotechnology in Latin America. Technology in Society, 33(1-2), 94-108. doi:10.1016/j.techsoc.2011.03.012Youtie, J., Porter, A. L., Shapira, P., & Newman, N. (2018). Lessons From 10 Years of Nanotechnology Bibliometric Analysis. Nanotechnology Environmental Health and Safety, 11-31. doi:10.1016/b978-0-12-813588-4.00002-6Yamashita, Y., & Okubo, Y. (2006). Patterns of scientific collaboration between Japan and France: Inter-sectoral analysis using Probabilistic Partnership Index (PPI). Scientometrics, 68(2), 303-324. doi:10.1007/s11192-006-0105-1Guan, J., & Ma, N. (2007). China’s emerging presence in nanoscience and nanotechnology. Research Policy, 36(6), 880-886. doi:10.1016/j.respol.2007.02.004Niu, F., & Qiu, J. (2013). Network structure, distribution and the growth of Chinese international research collaboration. Scientometrics, 98(2), 1221-1233. doi:10.1007/s11192-013-1170-xTang, L., Shapira, P., & Youtie, J. (2015). Is there a clubbing effect underlying Chinese research citation Increases? Journal of the Association for Information Science and Technology, 66(9), 1923-1932. doi:10.1002/asi.23302Jiang, M., Qi, Y., Liu, H., & Chen, Y. (2018). The Role of Nanomaterials and Nanotechnologies in Wastewater Treatment: a Bibliometric Analysis. Nanoscale Research Letters, 13(1). doi:10.1186/s11671-018-2649-4Brahic, C. China Encroaches on US Nanotech Lead; SciDev.Net: Wallingford, U.K., 2005; https://www.scidev.net/global/publishing/news/china-encroaches-on-us-nanotech-lead.html (accessed March 10, 2020).Terekhov, A. I. (2017). Bibliometric spectroscopy of Russia’s nanotechnology: 2000–2014. Scientometrics, 110(3), 1217-1242. doi:10.1007/s11192-016-2234-5Lee, S., & Bozeman, B. (2005). The Impact of Research Collaboration on Scientific Productivity. Social Studies of Science, 35(5), 673-702. doi:10.1177/0306312705052359Wang, L., Jacob, J., & Li, Z. (2018). Exploring the spatial dimensions of nanotechnology development in China: the effects of funding and spillovers. Regional Studies, 53(2), 245-260. doi:10.1080/00343404.2018.1457216McFadyen, M. A., & Cannella, A. A. (2004). SOCIAL CAPITAL AND KNOWLEDGE CREATION: DIMINISHING RETURNS OF THE NUMBER AND STRENGTH OF EXCHANGE RELATIONSHIPS. Academy of Management Journal, 47(5), 735-746. doi:10.2307/20159615He, Z.-L., Geng, X.-S., & Campbell-Hunt, C. (2009). Research collaboration and research output: A longitudinal study of 65 biomedical scientists in a New Zealand university. Research Policy, 38(2), 306-317. doi:10.1016/j.respol.2008.11.011Wuchty, S., Jones, B. F., & Uzzi, B. (2007). The Increasing Dominance of Teams in Production of Knowledge. Science, 316(5827), 1036-1039. doi:10.1126/science.1136099Zhou, P., & Glänzel, W. (2010). In-depth analysis on China’s international cooperation in science. Scientometrics, 82(3), 597-612. doi:10.1007/s11192-010-0174-zTakeda, Y., Mae, S., Kajikawa, Y., & Matsushima, K. (2009). Nanobiotechnology as an emerging research domain from nanotechnology: A bibliometric approach. Scientometrics, 80(1), 23-38. doi:10.1007/s11192-007-1897-

    Technological agglomeration and the emergence of clusters and networks in nanotechnology

    Get PDF
    Research and development at the nanoscale requires a large degree of integration, from convergence of research disciplines in new fields of enquiry to new linkages between start-ups, regional actors and research facilities. Based on the analysis of two clusters in nanotechnologies (MESA+ (Twente) and other centres in The Netherlands and Minatec in Grenoble in France), the paper discusses the phenomenon of technological agglomeration: co-located scientific and technological fields associated to coordinated technology platforms to some extent actively shaped by institutional entrepreneurs. Such co-location and coordination are probably a prerequisite for the emergence of strong nanocluster

    The alchemy of ideas

    Get PDF
    This article presents an assessment of the power of ideas and their role in initiating change and progress. The enormous potential cascade effect is illustrated by examining the movement of Modernism in the arts. Next, the immense scope and capabilities of the modern scientific endeavor—with robotic space exploration at the scale of 10⁹ meters at one extreme and the wonders of nanoscience at the scale of 10⁻⁹ m at the other—are examined. The attitudes and philosophies of neurological surgery are related to those involved in the Modernist movement and placed on the defined scale of contemporary scientific activity
    corecore