1,400 research outputs found

    Comparing Evaluation Methods for Encumbrance and Walking on Interaction with Touchscreen Mobile Devices

    Get PDF
    In this paper, two walking evaluation methods were compared to evaluate the effects of encumbrance while the preferred walking speed (PWS) is controlled. Users frequently carry cumbersome objects (e.g. shopping bags) and use mobile devices at the same time which can cause interaction difficulties and erroneous input. The two methods used to control the PWS were: walking on a treadmill and walking around a predefined route on the ground while following a pacesetter. The results from our target acquisition experiment showed that for ground walking at 100% of PWS, accuracy dropped to 36% when carrying a bag in the dominant hand while accuracy reduced to 34% for holding a box under the dominant arm. We also discuss the advantages and limitations of each evaluation method when examining encumbrance and suggest treadmill walking is not the most suitable approach to use if walking speed is an important factor in future mobile studies

    Nomadic input on mobile devices: the influence of touch input technique and walking speed on performance and offset modeling

    Get PDF
    In everyday life people use their mobile phones on-the-go with different walking speeds and with different touch input techniques. Unfortunately, much of the published research in mobile interaction does not quantify the influence of these variables. In this paper, we analyze the influence of walking speed, gait pattern and input techniques on commonly used performance parameters like error rate, accuracy and tapping speed, and we compare the results to the static condition. We examine the influence of these factors on the machine learned offset model used to correct user input and we make design recommendations. The results show that all performance parameters degraded when the subject started to move, for all input techniques. Index finger pointing techniques demonstrated overall better performance compared to thumb-pointing techniques. The influence of gait phase on tap event likelihood and accuracy was demonstrated for all input techniques and all walking speeds. Finally, it was shown that the offset model built on static data did not perform as well as models inferred from dynamic data, which indicates the speed-specific nature of the models. Also, models identified using specific input techniques did not perform well when tested in other conditions, demonstrating the limited validity of offset models to a particular input technique. The model was therefore calibrated using data recorded with the appropriate input technique, at 75% of preferred walking speed, which is the speed to which users spontaneously slow down when they use a mobile device and which presents a tradeoff between accuracy and usability. This led to an increase in accuracy compared to models built on static data. The error rate was reduced between 0.05% and 5.3% for landscape-based methods and between 5.3% and 11.9% for portrait-based methods

    Modelling and correcting for the impact of the gait cycle on touch screen typing accuracy

    Get PDF
    Walking and typing on a smartphone is an extremely common interaction. Previous research has shown that error rates are higher when walking than when stationary. In this paper we analyse the acceleration data logged in an experiment in which users typed whilst walking, and extract the gait phase angle. We find statistically significant relationships between tapping time, error rate and gait phase angle. We then use the gait phase as an additional input to an offset model, and show that this allows more accurate touch interaction for walking users than a model which considers only the recorded tap position

    The use of a task through virtual reality in cerebral palsy using two different interaction devices (concrete and abstract) - a cross-sectional randomized study.

    Get PDF
    BACKGROUND: Cerebral Palsy (CP) is characterised by variable difficulties in muscular action, resulting in inability of the individual to perform functional movement. An option to provide functionality to the individual with CP is the use of computer innovation. The aim of this paper was to verify if there was any performance improvement in a task performed in a virtual environment and if there was transfer to the task performed in the real environment and vice versa in this population. METHODS: A computer program was developed comprising a motor task, but with two possibilities of user interaction: a) concrete interface (with physical contact): in which the individual touches the computer screen to finish the task and b) abstract interface (no physical contact): in which the individual performs a hand movement in front of the Kinect device. Participants were split into two groups. The experimental group consisted of 28 individuals with CP within the ages of 6 and 15 years old. The control group included 28 typically developing individuals mirroring the age and sex of the experimental group. RESULTS: Individuals from both groups were able to improve task performance and retain acquired information. The CP group presented worse performance than the control group in all phases of the study. Further findings showed that the CP group presented better performance in the abstract interface than in the concrete interface, whereas, in the control group, the opposite occurred: their best performance was in the concrete. CONCLUSIONS: Motor tasks performed by individuals with CP through an interface with a more virtual environment feature (abstract interface: Kinect) provided better performance when compared to an interface with a more real characteristic (concrete interface: Touchscreen). TRIAL REGISTRATION: ClinicalTrials.gov Identifier - NCT03352440; Date of registration - November 17, 2017

    A Thumb Stroke-Based Virtual Keyboard for Sight-Free Text Entry on Touch-Screen Mobile Phones

    Get PDF
    The use of QWERTY on most of the current mobile devices for text entry usually requires users’ full visual attention and both hands, which is not always possible due to situational or physical impairments of users. Prior research has shown that users prefer to hold and interact with a mobile device with a single hand when possible, which is challenging and poorly supported by current mobile devices. We propose a novel thumb-stroke based keyboard called ThumbStroke, which can support both sight-free and one-handed text entry on touch-screen mobile devices. Selecting a character for text entry via ThumbStroke completely relies on the directions of thumb movements at anywhere on a device screen. We evaluated ThumbStroke through a longitudinal lab experiment including 20 sessions with 13 participants. ThumbStroke shows advantages in typing accuracy and user perceptions in comparison to Escape and QWERTY and results in faster typing speed than QWERTY for sight-free text entry

    The impact of encumbrance on mobile interactions

    Get PDF
    Part 1: Long and Short Papers (Continued); International audience; This paper investigates the effects of encumbrance (holding different types of objects while using mobile devices) to understand the interaction difficulties that it causes. An experiment was conducted where participants performed a target acquisition task on a touchscreen mobile phone while carrying different types of bags and boxes. Mobility was also evaluated since people carry items from one place to another. Motion capture hardware was used to track hand and arm postures to examine how holding the different types of objects caused excessive movement and instability therefore resulting in performance to decline. The results showed encumbrance and mobility caused target accuracy to decrease although input while holding the box under the non-dominant arm was more accurate and exerted quicker targeting times than holding no objects. Encumbrance affected the dominant hand more than the non-dominant hand as targeting error significantly increased and caused greater hand instability. The issues caused by encumbrance suggest the topic requires more attention from researchers and users would benefit greatly if better interaction techniques and applications are developed to counteract the problems. Document type: Part of book or chapter of boo

    Future flight decks: impact of +Gz on touchscreen usability

    Get PDF
    Future flight deck designs from various avionics manufacturer incorporate touchscreen technology. There is little published research investigating the impact of inflight vibrations and increased G-Force (+Gz) on touchscreen usability. A Fitts’ law experiment was conducted to understand the effect of +Gz on touchscreen usability. 2-Gz and 3-Gz conditions were simulated with a weight-adjustable wristband. Empirical results and subjective ratings showed a large impact of +Gz on performance and fatigue indices. While the simulated +Gz increased linearly, throughput decreased exponentially, and movement time increased exponentially. This was also reflected by subjective ratings across all conditions. Findings suggest to transfer the experimental setting into a more realistic environment (human centrifuge) where ecological validity can be achieved
    • 

    corecore