5,516 research outputs found

    The effects of robot facial emotional expressions and gender on child-robot interaction in a field study

    Get PDF
    Emotions, and emotional expression, have a broad influence on social interactions and are thus a key factor to consider in developing social robots. This study examined the impact of life-like affective facial expressions, in the humanoid robot Zeno, on children’s behaviour and attitudes towards the robot. Results indicate that robot expressions have mixed effects depending on participant gender. Male participants interacting with a responsive facially expressive robot showed a positive affective response and indicated greater liking towards the robot, compared to those interacting with the same robot maintaining a neutral expression. Female participants showed no marked difference across the conditions. We discuss the broader implications of these findings in terms of gender differences in human–robot interaction, noting the importance of the gender appearance in robots (in this case, male) and in relation to advancing the understanding of how interactions with expressive robots could lead to task-appropriate symbiotic relationships

    An emotion and memory model for social robots : a long-term interaction

    Get PDF
    In this thesis, we investigate the role of emotions and memory in social robotic companions. In particular, our aim is to study the effect of an emotion and memory model towards sustaining engagement and promoting learning in a long-term interaction. Our Emotion and Memory model was based on how humans create memory under various emotional events/states. The model enabled the robot to create a memory account of user's emotional events during a long-term child-robot interaction. The robot later adapted its behaviour through employing the developed memory in the following interactions with the users. The model also had an autonomous decision-making mechanism based on reinforcement learning to select behaviour according to the user preference measured through user's engagement and learning during the task. The model was implemented on the NAO robot in two different educational setups. Firstly, to promote user's vocabulary learning and secondly, to inform how to calculate area and perimeter of regular and irregular shapes. We also conducted multiple long-term evaluations of our model with children at the primary schools to verify its impact on their social engagement and learning. Our results showed that the behaviour generated based on our model was able to sustain social engagement. Additionally, it also helped children to improve their learning. Overall, the results highlighted the benefits of incorporating memory during child-Robot Interaction for extended periods of time. It promoted personalisation and reflected towards creating a child-robot social relationship in a long-term interaction

    A Systematic Review of Adaptivity in Human-Robot Interaction

    Get PDF
    As the field of social robotics is growing, a consensus has been made on the design and implementation of robotic systems that are capable of adapting based on the user actions. These actions may be based on their emotions, personality or memory of past interactions. Therefore, we believe it is significant to report a review of the past research on the use of adaptive robots that have been utilised in various social environments. In this paper, we present a systematic review on the reported adaptive interactions across a number of domain areas during Human-Robot Interaction and also give future directions that can guide the design of future adaptive social robots. We conjecture that this will help towards achieving long-term applicability of robots in various social domains

    Robotic Faces: Exploring Dynamical Patterns of Social Interaction between Humans and Robots

    Get PDF
    Thesis (Ph.D.) - Indiana University, Informatics, 2015The purpose of this dissertation is two-fold: 1) to develop an empirically-based design for an interactive robotic face, and 2) to understand how dynamical aspects of social interaction may be leveraged to design better interactive technologies and/or further our understanding of social cognition. Understanding the role that dynamics plays in social cognition is a challenging problem. This is particularly true in studying cognition via human-robot interaction, which entails both the natural social cognition of the human and the “artificial intelligence” of the robot. Clearly, humans who are interacting with other humans (or even other mammals such as dogs) are cognizant of the social nature of the interaction – their behavior in those cases differs from that when interacting with inanimate objects such as tools. Humans (and many other animals) have some awareness of “social”, some sense of other agents. However, it is not clear how or why. Social interaction patterns vary across culture, context, and individual characteristics of the human interactor. These factors are subsumed into the larger interaction system, influencing the unfolding of the system over time (i.e. the dynamics). The overarching question is whether we can figure out how to utilize factors that influence the dynamics of the social interaction in order to imbue our interactive technologies (robots, clinical AI, decision support systems, etc.) with some "awareness of social", and potentially create more natural interaction paradigms for those technologies. In this work, we explore the above questions across a range of studies, including lab-based experiments, field observations, and placing autonomous, interactive robotic faces in public spaces. We also discuss future work, how this research relates to making sense of what a robot "sees", creating data-driven models of robot social behavior, and development of robotic face personalities

    Analyzing children's expectations from robotic companions in educational settings

    Get PDF
    The use of robots as educational partners has been extensively explored, but less is known about the required characteristics these robots should have to meet children's expectations. Thus the purpose of this study is to analyze children's assumptions regarding morphology, functionality, and body features, among others, that robots should have to interact with them. To do so, we analyzed 142 drawings from 9 to 10 years old children and their answers to a survey provided after interacting with different robotic platforms. The main results convey on a gender-less robot with anthropomorphic (but machine-like) characteristics

    Measuring Engagement in Robot-Assisted Autism Therapy: A Cross-Cultural Study

    Get PDF
    During occupational therapy for children with autism, it is often necessary to elicit and maintain engagement for the children to benefit from the session. Recently, social robots have been used for this; however, existing robots lack the ability to autonomously recognize the children’s level of engagement, which is necessary when choosing an optimal interaction strategy. Progress in automated engagement reading has been impeded in part due to a lack of studies on child-robot engagement in autism therapy. While it is well known that there are large individual differences in autism, little is known about how these vary across cultures. To this end, we analyzed the engagement of children (age 3–13) from two different cultural backgrounds: Asia (Japan, n = 17) and Eastern Europe (Serbia, n = 19). The children participated in a 25 min therapy session during which we studied the relationship between the children’s behavioral engagement (task-driven) and different facets of affective engagement (valence and arousal). Although our results indicate that there are statistically significant differences in engagement displays in the two groups, it is difficult to make any causal claims about these differences due to the large variation in age and behavioral severity of the children in the study. However, our exploratory analysis reveals important associations between target engagement and perceived levels of valence and arousal, indicating that these can be used as a proxy for the children’s engagement during the therapy. We provide suggestions on how this can be leveraged to optimize social robots for autism therapy, while taking into account cultural differences.MEXT Grant-in-Aid for Young Scientists B (grant no. 16763279)Chubu University Grant I (grant no. 27IS04I (Japan))European Union. HORIZON 2020 (grant agreement no. 701236 (ENGAGEME))European Commission. Framework Programme for Research and Innovation. Marie Sklodowska-Curie Actions (Individual Fellowship)European Commission. Framework Programme for Research and Innovation. Marie Sklodowska-Curie Actions (grant agreement no. 688835 (DE-ENIGMA)
    • …
    corecore