469 research outputs found

    Performance improvement of segmentation-based depth representation in 3D imagery by region merging

    Get PDF
    The feasible implementation of immersive 3D video systems entails the need for a substantial reduction in the amount of image information necessary for representation. Multiview image rendering algorithms based on depth data have radically reduced the number of images required to reconstruct a 3D scene. Nonetheless, the compression of depth maps still poses several challenges due to the particular nature and characteristics of the data. To this end, this paper outlines a depth representation technique, developed in our earlier work, that exploits the correlation intrinsically present between color intensity and depth images capturing a natural scene. In this technique, a segmentation-based algorithm that is backwards compatible with conventional video coding systems is implemented. The effectiveness of our previous technique is enhanced in this contribution by a region merging process on the segmented regions, which results in a decrease in the amount of information necessary for transmission or storage of multiview image data by a factor of 20.5 with respect to the reference H.264/AVC coding methodology. This is furthermore achieved whilst maintaining a 3D image reconstruction and viewing quality which is quasi identical to the referenced approach.peer-reviewe

    3D TV: A Scalable System for Real-Time Acquisition, Transmission, and Autostereoscopic Display of Dynamic Scenes

    Get PDF
    Three-dimensional TV is expected to be the next revolution in the history of television. We implemented a 3D TV prototype system with real-time acquisition, transmission, and 3D display of dynamic scenes. We developed a distributed, scalable architecture to manage the high computation and bandwidth demands. Our system consists of an array of cameras, clusters of network-connected PCs, and a multi-projector 3D display. Multiple video streams are individually encoded and sent over a broadband network to the display. The 3D display shows high-resolution (1024 × 768) stereoscopic color images for multiple viewpoints without special glasses. We implemented systems with rear-projection and front-projection lenticular screens. In this paper, we provide a detailed overview of our 3D TV system, including an examination of design choices and tradeoffs. We present the calibration and image alignment procedures that are necessary to achieve good image quality. We present qualitative results and some early user feedback. We believe this is the first real-time end-to-end 3D TV system with enough views and resolution to provide a truly immersive 3D experience.Engineering and Applied Science

    No-reference quality metric for HEVC compression distortion estimation in depth maps

    Get PDF
    • …
    corecore