5,490 research outputs found

    Direction finding for an extended target with possibly non-symmetric spatial spectrum

    Get PDF
    We consider the problem of estimating the direction of arrival (DOA) of an extended target in radar array processing. Two algorithms are proposed that do not assume that the power azimuthal distribution of the scatterers is symmetric with respect to the mass center of the target. The first one is based on spectral moments which are easily related to the target’s DOA. The second method stems from a previous paper by the present authors and consists of a least-squares fit on the elements of the covariance matrix. Both methods are simple and are shown to provide accurate estimates. Furthermore, they extend the range of unambiguous DOAs that can be estimated, compared with the same previous paper

    SPOT-GPR: a freeware tool for target detection and localizationin GPR data developed within the COST action TU1208

    Get PDF
    SPOT-GPR (release 1.0) is a new freeware tool implementing an innovative Sub-Array Processing method, for the analysis of Ground-Penetrating Radar (GPR) data with the main purposes of detecting and localizing targets. The software is implemented in Matlab, it has a graphical user interface and a short manual. This work is the outcome of a series of three Short-Term Scientific Missions (STSMs) funded by European COoperation in Science and Technology (COST) and carried out in the framework of the COST Action TU1208 “Civil Engineering Applications of Ground Penetrating Radar” (www.GPRadar.eu). The input of the software is a GPR radargram (B-scan). The radargram is partitioned in subradargrams, composed of a few traces (A-scans) each. The multi-frequency information enclosed in each trace is exploited and a set of dominant Directions of Arrival (DoA) of the electromagnetic field is calculated for each sub-radargram. The estimated angles are triangulated, obtaining a pattern of crossings that are condensed around target locations. Such pattern is filtered, in order to remove a noisy background of unwanted crossings, and is then processed by applying a statistical procedure. Finally, the targets are detected and their positions are predicted. For DoA estimation, the MUltiple SIgnal Classification (MUSIC) algorithm is employed, in combination with the matched filter technique. To the best of our knowledge, this is the first time the matched filter technique is used for the processing of GPR data. The software has been tested on GPR synthetic radargrams, calculated by using the finite-difference timedomain simulator gprMax, with very good results

    Matched direction detectors and estimators for array processing with subspace steering vector uncertainties

    Get PDF
    In this paper, we consider the problem of estimating and detecting a signal whose associated spatial signature is known to lie in a given linear subspace but whose coordinates in this subspace are otherwise unknown, in the presence of subspace interference and broad-band noise. This situation arises when, on one hand, there exist uncertainties about the steering vector but, on the other hand, some knowledge about the steering vector errors is available. First, we derive the maximum-likelihood estimator (MLE) for the problem and compute the corresponding Cramer-Rao bound. Next, the maximum-likelihood estimates are used to derive a generalized likelihood ratio test (GLRT). The GLRT is compared and contrasted with the standard matched subspace detectors. The performances of the estimators and detectors are illustrated by means of numerical simulations

    DOA Estimation for Local Scattered CDMA Signals by Particle Swarm Optimization

    Get PDF
    This paper deals with the direction-of-arrival (DOA) estimation of local scattered code-division multiple access (CDMA) signals based on a particle swarm optimization (PSO) search. For conventional spectral searching estimators with local scattering, the searching complexity and estimating accuracy strictly depend on the number of search grids used during the search. In order to obtain high-resolution and accurate DOA estimation, a smaller grid size is needed. This is time consuming and it is unclear how to determine the required number of search grids. In this paper, a modified PSO is presented to reduce the required search grids for the conventional spectral searching estimator with the effects of local scattering. Finally, several computer simulations are provided for illustration and comparison
    • 

    corecore