143 research outputs found

    Using natural user interfaces to support synchronous distributed collaborative work

    Get PDF
    Synchronous Distributed Collaborative Work (SDCW) occurs when group members work together at the same time from different places together to achieve a common goal. Effective SDCW requires good communication, continuous coordination and shared information among group members. SDCW is possible because of groupware, a class of computer software systems that supports group work. Shared-workspace groupware systems are systems that provide a common workspace that aims to replicate aspects of a physical workspace that is shared among group members in a co-located environment. Shared-workspace groupware systems have failed to provide the same degree of coordination and awareness among distributed group members that exists in co-located groups owing to unintuitive interaction techniques that these systems have incorporated. Natural User Interfaces (NUIs) focus on reusing natural human abilities such as touch, speech, gestures and proximity awareness to allow intuitive human-computer interaction. These interaction techniques could provide solutions to the existing issues of groupware systems by breaking down the barrier between people and technology created by the interaction techniques currently utilised. The aim of this research was to investigate how NUI interaction techniques could be used to effectively support SDCW. An architecture for such a shared-workspace groupware system was proposed and a prototype, called GroupAware, was designed and developed based on this architecture. GroupAware allows multiple users from distributed locations to simultaneously view and annotate text documents, and create graphic designs in a shared workspace. Documents are represented as visual objects that can be manipulated through touch gestures. Group coordination and awareness is maintained through document updates via immediate workspace synchronization, user action tracking via user labels and user availability identification via basic proxemic interaction. Members can effectively communicate via audio and video conferencing. A user study was conducted to evaluate GroupAware and determine whether NUI interaction techniques effectively supported SDCW. Ten groups of three members each participated in the study. High levels of performance, user satisfaction and collaboration demonstrated that GroupAware was an effective groupware system that was easy to learn and use, and effectively supported group work in terms of communication, coordination and information sharing. Participants gave highly positive comments about the system that further supported the results. The successful implementation of GroupAware and the positive results obtained from the user evaluation provides evidence that NUI interaction techniques can effectively support SDCW

    Group reaching over digital tabletops with digital arm embodiments

    Get PDF
    In almost all collaborative tabletop tasks, groups require coordinated access to the shared objects on the table’s surface. The physical social norms of close-proximity interactions built up over years of interacting around other physical bodies cause people to avoid interfering with other people (e.g., avoiding grabbing the same object simultaneously). However, some digital tabletop situations require the use of indirect input (e.g., when using mice, and when supporting remote users). With indirect input, people are no longer physically embodied during their reaching gestures, so most systems provide digital embodiments – visual representations of each person – to provide feedback to both the person who is reaching and to the other group members. Tabletop arm embodiments have been shown to better support group interactions than simple visual designs, providing awareness of actions to the group. However, researchers and digital tabletop designers know little of how the design of digital arm embodiments affects the fundamental group tabletop interaction of reaching for objects. Therefore, in this thesis, we evaluate how people coordinate their interactions over digital tabletops when using different types of embodiments. Specifically, in a series of studies, we investigate how the visual design (what they look like) and interaction design (how they work) of digital arm embodiments affects a group’s coordinative behaviours in an open- ended parallel tabletop task. We evaluated visual factors of size, transparency, and realism (through pictures and videos of physical arms), as well as interaction factors of input and augmentations (feedback of interactions), in both a co-located and distributed environment. We found that the visual design had little effect on a group’s ability to coordinate access to shared tabletop items, that embodiment augmentations are useful to support group coordinative actions, and that there are large differences when the person is not physically co-present. Our results demonstrate an initial exploration into the design of digital arm embodiments, providing design guidelines for future researchers and designers to use when designing the next generation of shared digital spaces

    Factors influencing visual attention switch in multi-display user interfaces: a survey

    Get PDF
    Multi-display User Interfaces (MDUIs) enable people to take advantage of the different characteristics of different display categories. For example, combining mobile and large displays within the same system enables users to interact with user interface elements locally while simultaneously having a large display space to show data. Although there is a large potential gain in performance and comfort, there is at least one main drawback that can override the benefits of MDUIs: the visual and physical separation between displays requires that users perform visual attention switches between displays. In this paper, we present a survey and analysis of existing data and classifications to identify factors that can affect visual attention switch in MDUIs. Our analysis and taxonomy bring attention to the often ignored implications of visual attention switch and collect existing evidence to facilitate research and implementation of effective MDUIs.Postprin

    Co-present photo sharing on mobile devices

    Get PDF
    This dissertation researches current approaches to photo sharing. We have found that most current methods of photo sharing are not as compelling as traditional photo sharing - with the increasing in popularity of digital photography, consumers do not print photos as often as before and thus typically require a group display (such as a PC) to view their photographs collectively. This dissertation describes a mobile application that attempts to support traditional photo sharing activities by allowing users to share photos with other co-present users by synchronizing the display on multiple mobile devices. Various floor control policies (software locks that determine when someone can control the displays) were implemented. The behaviour of groups of users was studied to determine how people would use this application for sharing photos and how various floor control policies affect this behaviour

    Supporting collaborative work using interactive tabletop

    Get PDF
    PhD ThesisCollaborative working is a key of success for organisations. People work together around tables at work, home, school, and coffee shops. With the explosion of the internet and computer systems, there are a variety of tools to support collaboration in groups, such as groupware, and tools that support online meetings. However, in the case of co-located meetings and face-to-face situations, facial expressions, body language, and the verbal communications have significant influence on the group decision making process. Often people have a natural preference for traditional pen-and-paper-based decision support solutions in such situations. Thus, it is a challenge to implement tools that rely advanced technological interfaces, such as interactive multi-touch tabletops, to support collaborative work. This thesis proposes a novel tabletop application to support group work and investigates the effectiveness and usability of the proposed system. The requirements for the developed system are based on a review of previous literature and also on requirements elicited from potential users. The innovative aspect of our system is that it allows the use of personal devices that allow some level of privacy for the participants in the group work. We expect that the personal devices may contribute to the effectiveness of the use of tabletops to support collaborative work. We chose for the purpose of evaluation experiment the collaborative development of mind maps by groups, which has been investigated earlier as a representative form of collaborative work. Two controlled laboratory experiments were designed to examine the usability features and associated emotional attitudes for the tabletop mind map application in comparison with the conventional pen-and-paper approach in the context of collaborative work. The evaluation clearly indicates that the combination of the tabletop and personal devices support and encourage multiple people working collaboratively. The comparison of the associated emotional attitudes indicates that the interactive tabletop facilitates the active involvement of participants in the group decision making significantly more than the use of the pen-and-paper conditions. The work reported here contributes significantly to our understanding of the usability and effectiveness of interactive tabletop applications in the context of supporting of collaborative work.The Royal Thai governmen

    Virtual Valcamonica: collaborative exploration of prehistoric petroglyphs and their surrounding environment in multi-user virtual reality

    Get PDF
    In this paper, we present a novel, multi-user, virtual reality environment for the interactive, collaborative 3D analysis of large 3D scans and the technical advancements that were necessary to build it: a multi-view rendering system for large 3D point clouds, a suitable display infrastructure and a suite of collaborative 3D interaction techniques. The cultural heritage site of Valcamonica in Italy with its large collection of prehistoric rock-art served as an exemplary use case for evaluation. The results show that our output-sensitive level-of-detail rendering system is capable of visualizing a 3D dataset with an aggregate size of more than 14 billion points at interactive frame rates. The system design in this exemplar application results from close exchange with a small group of potential users: archaeologists with expertise in rock-art and allows them to explore the prehistoric art and its spatial context with highly realistic appearance. A set of dedicated interaction techniques was developed to facilitate collaborative visual analysis. A multi-display workspace supports the immediate comparison of geographically distributed artifacts. An expert review of the final demonstrator confirmed the potential for added value in rock-art research and the usability of our collaborative interaction techniques
    • …
    corecore