36,420 research outputs found

    On Human Predictions with Explanations and Predictions of Machine Learning Models: A Case Study on Deception Detection

    Full text link
    Humans are the final decision makers in critical tasks that involve ethical and legal concerns, ranging from recidivism prediction, to medical diagnosis, to fighting against fake news. Although machine learning models can sometimes achieve impressive performance in these tasks, these tasks are not amenable to full automation. To realize the potential of machine learning for improving human decisions, it is important to understand how assistance from machine learning models affects human performance and human agency. In this paper, we use deception detection as a testbed and investigate how we can harness explanations and predictions of machine learning models to improve human performance while retaining human agency. We propose a spectrum between full human agency and full automation, and develop varying levels of machine assistance along the spectrum that gradually increase the influence of machine predictions. We find that without showing predicted labels, explanations alone slightly improve human performance in the end task. In comparison, human performance is greatly improved by showing predicted labels (>20% relative improvement) and can be further improved by explicitly suggesting strong machine performance. Interestingly, when predicted labels are shown, explanations of machine predictions induce a similar level of accuracy as an explicit statement of strong machine performance. Our results demonstrate a tradeoff between human performance and human agency and show that explanations of machine predictions can moderate this tradeoff.Comment: 17 pages, 19 figures, in Proceedings of ACM FAT* 2019, dataset & demo available at https://deception.machineintheloop.co

    Explanation in Human-AI Systems: A Literature Meta-Review, Synopsis of Key Ideas and Publications, and Bibliography for Explainable AI

    Full text link
    This is an integrative review that address the question, "What makes for a good explanation?" with reference to AI systems. Pertinent literatures are vast. Thus, this review is necessarily selective. That said, most of the key concepts and issues are expressed in this Report. The Report encapsulates the history of computer science efforts to create systems that explain and instruct (intelligent tutoring systems and expert systems). The Report expresses the explainability issues and challenges in modern AI, and presents capsule views of the leading psychological theories of explanation. Certain articles stand out by virtue of their particular relevance to XAI, and their methods, results, and key points are highlighted. It is recommended that AI/XAI researchers be encouraged to include in their research reports fuller details on their empirical or experimental methods, in the fashion of experimental psychology research reports: details on Participants, Instructions, Procedures, Tasks, Dependent Variables (operational definitions of the measures and metrics), Independent Variables (conditions), and Control Conditions

    How do Humans Understand Explanations from Machine Learning Systems? An Evaluation of the Human-Interpretability of Explanation

    Full text link
    Recent years have seen a boom in interest in machine learning systems that can provide a human-understandable rationale for their predictions or decisions. However, exactly what kinds of explanation are truly human-interpretable remains poorly understood. This work advances our understanding of what makes explanations interpretable in the specific context of verification. Suppose we have a machine learning system that predicts X, and we provide rationale for this prediction X. Given an input, an explanation, and an output, is the output consistent with the input and the supposed rationale? Via a series of user-studies, we identify what kinds of increases in complexity have the greatest effect on the time it takes for humans to verify the rationale, and which seem relatively insensitive

    LIMEtree: Interactively Customisable Explanations Based on Local Surrogate Multi-output Regression Trees

    Get PDF
    Systems based on artificial intelligence and machine learning models should be transparent, in the sense of being capable of explaining their decisions to gain humans' approval and trust. While there are a number of explainability techniques that can be used to this end, many of them are only capable of outputting a single one-size-fits-all explanation that simply cannot address all of the explainees' diverse needs. In this work we introduce a model-agnostic and post-hoc local explainability technique for black-box predictions called LIMEtree, which employs surrogate multi-output regression trees. We validate our algorithm on a deep neural network trained for object detection in images and compare it against Local Interpretable Model-agnostic Explanations (LIME). Our method comes with local fidelity guarantees and can produce a range of diverse explanation types, including contrastive and counterfactual explanations praised in the literature. Some of these explanations can be interactively personalised to create bespoke, meaningful and actionable insights into the model's behaviour. While other methods may give an illusion of customisability by wrapping, otherwise static, explanations in an interactive interface, our explanations are truly interactive, in the sense of allowing the user to "interrogate" a black-box model. LIMEtree can therefore produce consistent explanations on which an interactive exploratory process can be built

    The Grammar of Interactive Explanatory Model Analysis

    Full text link
    The growing need for in-depth analysis of predictive models leads to a series of new methods for explaining their local and global properties. Which of these methods is the best? It turns out that this is an ill-posed question. One cannot sufficiently explain a black-box machine learning model using a single method that gives only one perspective. Isolated explanations are prone to misunderstanding, which inevitably leads to wrong or simplistic reasoning. This problem is known as the Rashomon effect and refers to diverse, even contradictory interpretations of the same phenomenon. Surprisingly, the majority of methods developed for explainable machine learning focus on a single aspect of the model behavior. In contrast, we showcase the problem of explainability as an interactive and sequential analysis of a model. This paper presents how different Explanatory Model Analysis (EMA) methods complement each other and why it is essential to juxtapose them together. The introduced process of Interactive EMA (IEMA) derives from the algorithmic side of explainable machine learning and aims to embrace ideas developed in cognitive sciences. We formalize the grammar of IEMA to describe potential human-model dialogues. IEMA is implemented in the human-centered framework that adopts interactivity, customizability and automation as its main traits. Combined, these methods enhance the responsible approach to predictive modeling.Comment: 17 pages, 10 figures, 3 table

    An Interaction Framework for Studying Co-Creative AI

    Full text link
    Machine learning has been applied to a number of creative, design-oriented tasks. However, it remains unclear how to best empower human users with these machine learning approaches, particularly those users without technical expertise. In this paper we propose a general framework for turn-based interaction between human users and AI agents designed to support human creativity, called {co-creative systems}. The framework can be used to better understand the space of possible designs of co-creative systems and reveal future research directions. We demonstrate how to apply this framework in conjunction with a pair of recent human subject studies, comparing between the four human-AI systems employed in these studies and generating hypotheses towards future studies.Comment: 6 pages, 2 figures, Human-Centered Machine Learning Perspectives Worksho

    A Workflow for Visual Diagnostics of Binary Classifiers using Instance-Level Explanations

    Full text link
    Human-in-the-loop data analysis applications necessitate greater transparency in machine learning models for experts to understand and trust their decisions. To this end, we propose a visual analytics workflow to help data scientists and domain experts explore, diagnose, and understand the decisions made by a binary classifier. The approach leverages "instance-level explanations", measures of local feature relevance that explain single instances, and uses them to build a set of visual representations that guide the users in their investigation. The workflow is based on three main visual representations and steps: one based on aggregate statistics to see how data distributes across correct / incorrect decisions; one based on explanations to understand which features are used to make these decisions; and one based on raw data, to derive insights on potential root causes for the observed patterns. The workflow is derived from a long-term collaboration with a group of machine learning and healthcare professionals who used our method to make sense of machine learning models they developed. The case study from this collaboration demonstrates that the proposed workflow helps experts derive useful knowledge about the model and the phenomena it describes, thus experts can generate useful hypotheses on how a model can be improved.Comment: Published at IEEE Conference on Visual Analytics Science and Technology (IEEE VAST 2017

    "I had a solid theory before but it's falling apart": Polarizing Effects of Algorithmic Transparency

    Full text link
    The rise of machine learning has brought closer scrutiny to intelligent systems, leading to calls for greater transparency and explainable algorithms. We explore the effects of transparency on user perceptions of a working intelligent system for emotion detection. In exploratory Study 1, we observed paradoxical effects of transparency which improves perceptions of system accuracy for some participants while reducing accuracy perceptions for others. In Study 2, we test this observation using mixed methods, showing that the apparent transparency paradox can be explained by a mismatch between participant expectations and system predictions. We qualitatively examine this process, indicating that transparency can undermine user confidence by causing users to fixate on flaws when they already have a model of system operation. In contrast transparency helps if users lack such a model. Finally, we revisit the notion of transparency and suggest design considerations for building safe and successful machine learning systems based on our insights

    Explainability in Human-Agent Systems

    Full text link
    This paper presents a taxonomy of explainability in Human-Agent Systems. We consider fundamental questions about the Why, Who, What, When and How of explainability. First, we define explainability, and its relationship to the related terms of interpretability, transparency, explicitness, and faithfulness. These definitions allow us to answer why explainability is needed in the system, whom it is geared to and what explanations can be generated to meet this need. We then consider when the user should be presented with this information. Last, we consider how objective and subjective measures can be used to evaluate the entire system. This last question is the most encompassing as it will need to evaluate all other issues regarding explainability

    Interactive Data Integration through Smart Copy & Paste

    Full text link
    In many scenarios, such as emergency response or ad hoc collaboration, it is critical to reduce the overhead in integrating data. Ideally, one could perform the entire process interactively under one unified interface: defining extractors and wrappers for sources, creating a mediated schema, and adding schema mappings ? while seeing how these impact the integrated view of the data, and refining the design accordingly. We propose a novel smart copy and paste (SCP) model and architecture for seamlessly combining the design-time and run-time aspects of data integration, and we describe an initial prototype, the CopyCat system. In CopyCat, the user does not need special tools for the different stages of integration: instead, the system watches as the user copies data from applications (including the Web browser) and pastes them into CopyCat?s spreadsheet-like workspace. CopyCat generalizes these actions and presents proposed auto-completions, each with an explanation in the form of provenance. The user provides feedback on these suggestions ? through either direct interactions or further copy-and-paste operations ? and the system learns from this feedback. This paper provides an overview of our prototype system, and identifies key research challenges in achieving SCP in its full generality.Comment: CIDR 200
    • …
    corecore