296 research outputs found

    Reducing Internet Latency : A Survey of Techniques and their Merit

    Get PDF
    Bob Briscoe, Anna Brunstrom, Andreas Petlund, David Hayes, David Ros, Ing-Jyh Tsang, Stein Gjessing, Gorry Fairhurst, Carsten Griwodz, Michael WelzlPeer reviewedPreprin

    Dual Queue Coupled AQM: Deployable Very Low Queuing Delay for All

    Full text link
    On the Internet, sub-millisecond queueing delay and capacity-seeking have traditionally been considered mutually exclusive. We introduce a service that offers both: Low Latency Low Loss Scalable throughput (L4S). When tested under a wide range of conditions emulated on a testbed using real residential broadband equipment, queue delay remained both low (median 100--300 ÎĽ\mus) and consistent (99th percentile below 2 ms even under highly dynamic workloads), without compromising other metrics (zero congestion loss and close to full utilization). L4S exploits the properties of `Scalable' congestion controls (e.g., DCTCP, TCP Prague). Flows using such congestion control are however very aggressive, which causes a deployment challenge as L4S has to coexist with so-called `Classic' flows (e.g., Reno, CUBIC). This paper introduces an architectural solution: `Dual Queue Coupled Active Queue Management', which enables balance between Scalable and Classic flows. It counterbalances the more aggressive response of Scalable flows with more aggressive marking, without having to inspect flow identifiers. The Dual Queue structure has been implemented as a Linux queuing discipline. It acts like a semi-permeable membrane, isolating the latency of Scalable and `Classic' traffic, but coupling their capacity into a single bandwidth pool. This paper justifies the design and implementation choices, and visualizes a representative selection of hundreds of thousands of experiment runs to test our claims.Comment: Preprint. 17pp, 12 Figs, 60 refs. Submitted to IEEE/ACM Transactions on Networkin

    Congestion Control for Streaming Media

    Get PDF
    The Internet has assumed the role of the underlying communication network for applications such as file transfer, electronic mail, Web browsing and multimedia streaming. Multimedia streaming, in particular, is growing with the growth in power and connectivity of today\u27s computers. These Internet applications have a variety of network service requirements and traffic characteristics, which presents new challenges to the single best-effort service of today\u27s Internet. TCP, the de facto Internet transport protocol, has been successful in satisfying the needs of traditional Internet applications, but fails to satisfy the increasingly popular delay sensitive multimedia applications. Streaming applications often use UDP without a proper congestion avoidance mechanisms, threatening the well-being of the Internet. This dissertation presents an IP router traffic management mechanism, referred to as Crimson, that can be seamlessly deployed in the current Internet to protect well-behaving traffic from misbehaving traffic and support Quality of Service (QoS) requirements of delay sensitive multimedia applications as well as traditional Internet applications. In addition, as a means to enhance Internet support for multimedia streaming, this dissertation report presents design and evaluation of a TCP-Friendly and streaming-friendly transport protocol called the Multimedia Transport Protocol (MTP). Through a simulation study this report shows the Crimson network efficiently handles network congestion and minimizes queuing delay while providing affordable fairness protection from misbehaving flows over a wide range of traffic conditions. In addition, our results show that MTP offers streaming performance comparable to that provided by UDP, while doing so under a TCP-Friendly rate

    A Survey on Data Plane Programming with P4: Fundamentals, Advances, and Applied Research

    Full text link
    With traditional networking, users can configure control plane protocols to match the specific network configuration, but without the ability to fundamentally change the underlying algorithms. With SDN, the users may provide their own control plane, that can control network devices through their data plane APIs. Programmable data planes allow users to define their own data plane algorithms for network devices including appropriate data plane APIs which may be leveraged by user-defined SDN control. Thus, programmable data planes and SDN offer great flexibility for network customization, be it for specialized, commercial appliances, e.g., in 5G or data center networks, or for rapid prototyping in industrial and academic research. Programming protocol-independent packet processors (P4) has emerged as the currently most widespread abstraction, programming language, and concept for data plane programming. It is developed and standardized by an open community and it is supported by various software and hardware platforms. In this paper, we survey the literature from 2015 to 2020 on data plane programming with P4. Our survey covers 497 references of which 367 are scientific publications. We organize our work into two parts. In the first part, we give an overview of data plane programming models, the programming language, architectures, compilers, targets, and data plane APIs. We also consider research efforts to advance P4 technology. In the second part, we analyze a large body of literature considering P4-based applied research. We categorize 241 research papers into different application domains, summarize their contributions, and extract prototypes, target platforms, and source code availability.Comment: Submitted to IEEE Communications Surveys and Tutorials (COMS) on 2021-01-2

    Characterization Guidelines for Active Queue Management (AQM)

    Get PDF
    Unmanaged large buffers in today’s networks have given rise to a slew of performance issues. These performance issues can be addressed by some form of Active Queue Management (AQM) mechanism, optionally in combination with a packet-scheduling scheme such as fair queuing. This document describes various criteria for performing characterizations of AQM schemes that can be used in lab testing during development, prior to deployment

    Treatment-Based Classi?cation in Residential Wireless Access Points

    Get PDF
    IEEE 802.11 wireless access points (APs) act as the central communication hub inside homes, connecting all networked devices to the Internet. Home users run a variety of network applications with diverse Quality-of-Service requirements (QoS) through their APs. However, wireless APs are often the bottleneck in residential networks as broadband connection speeds keep increasing. Because of the lack of QoS support and complicated configuration procedures in most off-the-shelf APs, users can experience QoS degradation with their wireless networks, especially when multiple applications are running concurrently. This dissertation presents CATNAP, Classification And Treatment iN an AP , to provide better QoS support for various applications over residential wireless networks, especially timely delivery for real-time applications and high throughput for download-based applications. CATNAP consists of three major components: supporting functions, classifiers, and treatment modules. The supporting functions collect necessary flow level statistics and feed it into the CATNAP classifiers. Then, the CATNAP classifiers categorize flows along three-dimensions: response-based/non-response-based, interactive/non-interactive, and greedy/non-greedy. Each CATNAP traffic category can be directly mapped to one of the following treatments: push/delay, limited advertised window size/drop, and reserve bandwidth. Based on the classification results, the CATNAP treatment module automatically applies the treatment policy to provide better QoS support. CATNAP is implemented with the NS network simulator, and evaluated against DropTail and Strict Priority Queue (SPQ) under various network and traffic conditions. In most simulation cases, CATNAP provides better QoS supports than DropTail: it lowers queuing delay for multimedia applications such as VoIP, games and video, fairly treats FTP flows with various round trip times, and is even functional when misbehaving UDP traffic is present. Unlike current QoS methods, CATNAP is a plug-and-play solution, automatically classifying and treating flows without any user configuration, or any modification to end hosts or applications

    Managing Network Delay for Browser Multiplayer Games

    Get PDF
    Latency is one of the key performance elements affecting the quality of experience (QoE) in computer games. Latency in the context of games can be defined as the time between the user input and the result on the screen. In order for the QoE to be satisfactory the game needs to be able to react fast enough to player input. In networked multiplayer games, latency is composed of network delay and local delays. Some major sources of network delay are queuing delay and head-of-line (HOL) blocking delay. Network delay in the Internet can be even in the order of seconds. In this thesis we discuss what feasible networking solutions exist for browser multiplayer games. We conduct a literature study to analyze the Differentiated Services architecture, some salient Active Queue Management (AQM) algorithms (RED, PIE, CoDel and FQ-CoDel), the Explicit Congestion Notification (ECN) concept and network protocols for web browser (WebSocket, QUIC and WebRTC). RED, PIE and CoDel as single-queue implementations would be sub-optimal for providing low latency to game traffic. FQ-CoDel is a multi-queue AQM and provides flow separation that is able to prevent queue-building bulk transfers from notably hampering latency-sensitive flows. WebRTC Data-Channel seems promising for games since it can be used for sending arbitrary application data and it can avoid HOL blocking. None of the network protocols, however, provide completely satisfactory support for the transport needs of multiplayer games: WebRTC is not designed for client-server connections, QUIC is not designed for traffic patterns typical for multiplayer games and WebSocket would require parallel connections to mitigate the effects of HOL blocking
    • …
    corecore