5,388 research outputs found

    Multi-agent Collision Avoidance Using Interval Analysis and Symbolic Modelling with its Application to the Novel Polycopter

    Get PDF
    Coordination is fundamental component of autonomy when a system is defined by multiple mobile agents. For unmanned aerial systems (UAS), challenges originate from their low-level systems, such as their flight dynamics, which are often complex. The thesis begins by examining these low-level dynamics in an analysis of several well known UAS using a novel symbolic component-based framework. It is shown how this approach is used effectively to define key model and performance properties necessary of UAS trajectory control. This is demonstrated initially under the context of linear quadratic regulation (LQR) and model predictive control (MPC) of a quadcopter. The symbolic framework is later extended in the proposal of a novel UAS platform, referred to as the ``Polycopter" for its morphing nature. This dual-tilt axis system has unique authority over is thrust vector, in addition to an ability to actively augment its stability and aerodynamic characteristics. This presents several opportunities in exploitative control design. With an approach to low-level UAS modelling and control proposed, the focus of the thesis shifts to investigate the challenges associated with local trajectory generation for the purpose of multi-agent collision avoidance. This begins with a novel survey of the state-of-the-art geometric approaches with respect to performance, scalability and tolerance to uncertainty. From this survey, the interval avoidance (IA) method is proposed, to incorporate trajectory uncertainty in the geometric derivation of escape trajectories. The method is shown to be more effective in ensuring safe separation in several of the presented conditions, however performance is shown to deteriorate in denser conflicts. Finally, it is shown how by re-framing the IA problem, three dimensional (3D) collision avoidance is achieved. The novel 3D IA method is shown to out perform the original method in three conflict cases by maintaining separation under the effects of uncertainty and in scenarios with multiple obstacles. The performance, scalability and uncertainty tolerance of each presented method is then examined in a set of scenarios resembling typical coordinated UAS operations in an exhaustive Monte-Carlo analysis

    Upravljanje putanjama vazduhoplova u kontroli letenja na pre-taktičkom i taktičkom nivou

    Get PDF
    Global air traffic demand is continuously increasing, and it is predicted to be tripled by 2050. The need for increasing air traffic capacity motivates a shift of ATM towards Trajectory Based Operations (TBOs). This implies the possibility to design efficient congestion-free aircraft trajectories more in advance (pre-tactical, strategic level) reducing controller’s workload on tactical level. As consequence, controllers will be able to manage more flights. Current flow management practices in air traffic management (ATM) system shows that under the present system settings there are only timid demand management actions taken prior to the day of operation such as: slot allocation and strategic flow rerouting. But the choice of air route for a particular flight is seen as a commercial decision to be taken by airlines, given air traffic control constraints. This thesis investigates the potential of robust trajectory planning (considered as an additional demand management action) at pre-tactical level as a mean to alleviate the en-route congestion in airspace. Robust trajectory planning (RTP) involves generation of congestion-free trajectories with minimum operating cost taking into account uncertainty of trajectory prediction and unforeseen event. Although planned cost could be higher than of conventional models, adding robustness to schedules might reduce cost of disruptions and hopefully lead to reductions in operating cost. The most of existing trajectory planning models consider finding of conflict-free trajectories without taking into account uncertainty of trajectory prediction. It is shown in the thesis that in the case of traffic disturbances, it is better to have a robust solution otherwise newly generated congestion problems would be hard and costly to solve. This thesis introduces a novel approach for route generation (3D trajectory) based on homotopic feature of continuous functions. It is shown that this approach is capable of generating a large number of route shapes with a reasonable number of decision variables. Those shapes are then coupled with time dimension in order to create trajectories (4D)...Globalna potražnja za vazdušnim saobraćajem u stalnom je porastu i prognozira se da će broj letova biti utrostručen do 2050 godine. Potreba za povećanjem kapaciteta sistema vazdušnog saobraćaja motivisala je promene u sistemu upravljanja saobraćajnim tokovima u kome će u budućnosti centralnu ulogu imati putanje vazduhoplova tzv. “trajectory-based” koncept. Takav sistem omogućiće planiranje putanja vazduhoplova koje ne stvaraju zagušenja u sistemu na pre-taktičkom nivou i time smanjiti radno opterećenje kontrolora na taktičkom nivou. Kao posledica, kontrolor će moći da upravlja više letova nego u današnjem sistemu. Današnja praksa upravljanja saobraćajnim tokovima pokazuje da se mali broj upravljačkih akcija primenjuje pre dana obavljanja letova npr.: alokacija slotova poletanja i strateško upravljanje saobraćajnim tokovima. Međutim izbor putanje kojom će se odviti let posmatra se kao komercijalna odluka aviokompanije (uz poštovanje postavljenih ograničenja od strane kontrole letenja) i stoga je ostavljen na izbor avio-kompaniji. Većina, do danas razvijenih, modela upravljanja putanjama vazduhoplova ima za cilj generisanje bez-konfliktnih putanja, ne uzimajući u obzir neizvesnost u poziciji vazduhoplova. U ovoj doktorskoj disertaciji ispitivano je planiranje robustnih putanja vazduhoplova (RTP) na pre-taktičkom nivou kao sredstvo ublažavanja zagušenja u vazdušnom prostoru . Robustno upravljanje putanjama vazduhoplova podrazumeva izbor putanja vazduhoplova sa minimalnim operativnim troškovima koje ne izazivaju zagušenja u vazdušnom prostoru u uslovima neizvesnosti buduđe pozicije vazduhoplova i nepredviđenih događaja. Iako predviđeni (planirani) operativni troškovi robustnih putanja mogu u startu biti veći od operativnih troškova bez-konfliktnih putanja, robusnost može uticati na smanjenje troškove poremećaja putanja jer ne zahteva dodatnu promenu putanja vazduhplova radi izbegavanja konfliktnih situacija na taktičkom nivou. To na kraju može dovesti i do smanjenja stvarnih operativnih troškova. U tezi je pokazano, da je u slučaju poremećaja saobraćaja bolje imati robustno rešenje (putanje), jer novo-nastali problem zagušenosti vazdušnog prostora je teško i skupo rešiti..

    Dynamic Evaluation of Traffic Noise through Standard and Multifractal Models

    Get PDF
    Traffic microsimulation models use the movement of individual driver-vehicle-units (DVUs) and their interactions, which allows a detailed estimation of the traffic noise using Common Noise Assessment Methods (CNOSSOS). The Dynamic Traffic Noise Assessment (DTNA) methodology is applied to real traffic situations, then compared to on-field noise levels from measurement campaigns. This makes it possible to determine the influence of certain local traffic factors on the evaluation of noise. The pattern of distribution of vehicles along the avenue is related to the logic of traffic light control. The analysis of the inter-cycles noise variability during the simulation and measurement time shows no influence from local factors on the prediction of the dynamic traffic noise assessment tool based on CNOSSOS. A multifractal approach of acoustic waves propagation and the source behaviors in the traffic area are implemented. The novelty of the approach also comes from the multifractal model's freedom which allows the simulation, through the fractality degree, of various behaviors of the acoustic waves. The mathematical backbone of the model is developed on Cayley-Klein-type absolute geometries, implying harmonic mappings between the usual space and the Lobacevsky plane in a Poincare metric. The isomorphism of two groups of SL(2R) type showcases joint invariant functions that allow associations of pulsations-velocities manifolds typ

    Development, analysis, and implications of open-source simulations of remotely piloted aircraft

    Get PDF
    In recent years, the use of Remotely Piloted Aircraft (RPAs) for diverse purposes has increased exponentially. As a consequence, the uncertainty created by situations turning into a threat for civilians has led to more restrictive regulations from national administrations such as Transport Canada. Their purpose is to safely integrate RPAs in the current airspace used for piloted aviation by evaluating Sense and Avoid (SAA) strategies and close encounters. The difficulty falls on having to rely on simulated environments because of the risk to the human pilot in the piloted aircraft. In the first part of this research, the technical difficulties associated with the development and study of RPA computer models are discussed. It explores the rationale behind using Open-Source Software (OSS) platforms for simulating RPAs as well as the challenges associated with interacting with OSS at graduate student level. A set of recommendations is proposed as the solution to improve the graduate student experience with OSS. In the second part, particular challenges related to the design of OSS computer models are addressed. Based on: (1) the differences and similarities between piloted and RPA flight simulators and (2) existing Verification and Validation (V&V) approaches, a validation method is presented as a solution to the subject of developing fixed-wing RPAs in OSS environments. This method is used to design two flight dynamics models with SAA applications. The first computer model is presented in tutorial format as a case study for the validation procedure whereas the second computer model is specific for testing SAA strategies. In the last part, one of the designed RPAs is integrated into a computer environment with a representative general aircraft. From the simulated encounters, a diving avoidance manoeuvre on the RPA is developed. This performance is observed to analyze the consequences to the airspace. The implications of this research are seen from three perspectives: (1) the OSS challenges in graduate school are wide-spread across disciplines, (2) the proposed validation procedure is adaptable to fit any computer model and simulation scenario, and (3) the simulated OSS framework with an RPA computer model has served for testing preliminary SAA methods with close encounters with manned aircraft
    corecore