28,746 research outputs found

    Salience and default mode network coupling predicts cognition in aging and Parkinsonā€™s disease

    Full text link
    OBJECTIVES: Cognitive impairment is common in Parkinsonā€™s disease (PD). Three neurocognitive networks support efficient cognition: the salience network, the default mode network, and the central executive network. The salience network is thought to switch between activating and deactivating the default mode and central executive networks. Anti-correlated interactions between the salience and default mode networks in particular are necessary for efficient cognition. Our previous work demonstrated altered functional coupling between the neurocognitive networks in non-demented individuals with PD compared to age-matched control participants. Here, we aim to identify associations between cognition and functional coupling between these neurocognitive networks in the same group of participants. METHODS: We investigated the extent to which intrinsic functional coupling among these neurocognitive networks is related to cognitive performance across three neuropsychological domains: executive functioning, psychomotor speed, and verbal memory. Twenty-four non-demented individuals with mild to moderate PD and 20 control participants were scanned at rest and evaluated on three neuropsychological domains. RESULTS: PD participants were impaired on tests from all three domains compared to control participants. Our imaging results demonstrated that successful cognition across healthy aging and Parkinsonā€™s disease participants was related to anti-correlated coupling between the salience and default mode networks. Individuals with poorer performance scores across groups demonstrated more positive salience network/default-mode network coupling. CONCLUSIONS: Successful cognition relies on healthy coupling between the salience and default mode networks, which may become dysfunctional in PD. These results can help inform non-pharmacological interventions (repetitive transcranial magnetic stimulation) targeting these specific networks before they become vulnerable in early stages of Parkinsonā€™s disease.Published versio

    Sleep-like slow oscillations improve visual classification through synaptic homeostasis and memory association in a thalamo-cortical model

    Full text link
    The occurrence of sleep passed through the evolutionary sieve and is widespread in animal species. Sleep is known to be beneficial to cognitive and mnemonic tasks, while chronic sleep deprivation is detrimental. Despite the importance of the phenomenon, a complete understanding of its functions and underlying mechanisms is still lacking. In this paper, we show interesting effects of deep-sleep-like slow oscillation activity on a simplified thalamo-cortical model which is trained to encode, retrieve and classify images of handwritten digits. During slow oscillations, spike-timing-dependent-plasticity (STDP) produces a differential homeostatic process. It is characterized by both a specific unsupervised enhancement of connections among groups of neurons associated to instances of the same class (digit) and a simultaneous down-regulation of stronger synapses created by the training. This hierarchical organization of post-sleep internal representations favours higher performances in retrieval and classification tasks. The mechanism is based on the interaction between top-down cortico-thalamic predictions and bottom-up thalamo-cortical projections during deep-sleep-like slow oscillations. Indeed, when learned patterns are replayed during sleep, cortico-thalamo-cortical connections favour the activation of other neurons coding for similar thalamic inputs, promoting their association. Such mechanism hints at possible applications to artificial learning systems.Comment: 11 pages, 5 figures, v5 is the final version published on Scientific Reports journa

    Associative memory of phase-coded spatiotemporal patterns in leaky Integrate and Fire networks

    Get PDF
    We study the collective dynamics of a Leaky Integrate and Fire network in which precise relative phase relationship of spikes among neurons are stored, as attractors of the dynamics, and selectively replayed at differentctime scales. Using an STDP-based learning process, we store in the connectivity several phase-coded spike patterns, and we find that, depending on the excitability of the network, different working regimes are possible, with transient or persistent replay activity induced by a brief signal. We introduce an order parameter to evaluate the similarity between stored and recalled phase-coded pattern, and measure the storage capacity. Modulation of spiking thresholds during replay changes the frequency of the collective oscillation or the number of spikes per cycle, keeping preserved the phases relationship. This allows a coding scheme in which phase, rate and frequency are dissociable. Robustness with respect to noise and heterogeneity of neurons parameters is studied, showing that, since dynamics is a retrieval process, neurons preserve stablecprecise phase relationship among units, keeping a unique frequency of oscillation, even in noisy conditions and with heterogeneity of internal parameters of the units

    Specialization of the rostral prefrontal cortex for distinct analogy processes

    Get PDF
    Analogical reasoning is central to learning and abstract thinking. It involves using a more familiar situation (source) to make inferences about a less familiar situation (target). According to the predominant cognitive models, analogical reasoning includes 1) generation of structured mental representations and 2) mapping based on structural similarities between them. This study used functional magnetic resonance imaging to specify the role of rostral prefrontal cortex (PFC) in these distinct processes. An experimental paradigm was designed that enabled differentiation between these processes, by temporal separation of the presentation of the source and the target. Within rostral PFC, a lateral subregion was activated by analogy task both during study of the source (before the source could be compared with a target) and when the target appeared. This may suggest that this subregion supports fundamental analogy processes such as generating structured representations of stimuli but is not specific to one particular processing stage. By contrast, a dorsomedial subregion of rostral PFC showed an interaction between task (analogy vs. control) and period (more activated when the target appeared). We propose that this region is involved in comparison or mapping processes. These results add to the growing evidence for functional differentiation between rostral PFC subregions

    Utilizing a 3D game engine to develop a virtual design review system

    Get PDF
    A design review process is where information is exchanged between the designers and design reviewers to resolve any potential design related issues, and to ensure that the interests and goals of the owner are met. The effective execution of design review will minimize potential errors or conflicts, reduce the time for review, shorten the project life-cycle, allow for earlier occupancy, and ultimately translate into significant total project savings to the owner. However, the current methods of design review are still heavily relying on 2D paper-based format, sequential and lack central and integrated information base for efficient exchange and flow of information. There is thus a need for the use of a new medium that allow for 3D visualization of designs, collaboration among designers and design reviewers, and early and easy access to design review information. This paper documents the innovative utilization of a 3D game engine, the Torque Game Engine as the underlying tool and enabling technology for a design review system, the Virtual Design Review System for architectural designs. Two major elements are incorporated; 1) a 3D game engine as the driving tool for the development and implementation of design review processes, and 2) a virtual environment as the medium for design review, where visualization of design and design review information is based on sound principles of GUI design. The development of the VDRS involves two major phases; firstly, the creation of the assets and the assembly of the virtual environment, and secondly, the modification of existing functions or introducing new functionality through programming of the 3D game engine in order to support design review in a virtual environment. The features that are included in the VDRS are support for database, real-time collaboration across network, viewing and navigation modes, 3D object manipulation, parametric input, GUI, and organization for 3D objects

    Exercise Training and Functional Connectivity Changes in Mild Cognitive Empairment and Healthy Elders

    Get PDF
    Background: Effective interventions are needed to improve brain function in mild cognitive impairment (MCI), an early stage of Alzheimerā€™s disease (AD). The posterior cingulate cortex (PCC)/precuneus is a hub of the default mode network (DMN) and is preferentially vulnerable to disruption of functional connectivity in MCI and AD. Objective: We investigated whether 12 weeks of aerobic exercise could enhance functional connectivity of the PCC/precuneus in MCI and healthy elders. Methods: Sixteen MCI and 16 healthy elders (age rangeā€Š=ā€Š60ā€“88) engaged in a supervised 12-week walking exercise intervention. Functional MRI was acquired at rest; the PCC/precuneus was used as a seed for correlated brain activity maps. Results: A linear mixed effects model revealed a significant interaction in the right parietal lobe: the MCI group showed increased connectivity while the healthy elders showed decreased connectivity. In addition, both groups showed increased connectivity with the left postcentral gyrus. Comparing pre to post intervention changes within each group, the MCI group showed increased connectivity in 10 regions spanning frontal, parietal, temporal and insular lobes, and the cerebellum. Healthy elders did not demonstrate any significant connectivity changes. Conclusion: The observed results show increased functional connectivity of the PCC/precuneus in individuals with MCI after 12 weeks of moderate intensity walking exercise training. The protective effects of exercise training on cognition may be realized through the enhancement of neural recruitment mechanisms, which may possibly increase cognitive reserve. Whether these effects of exercise training may delay further cognitive decline in patients diagnosed with MCI remains to be demonstrated

    Differential Impact of Interference on Internally- and Externally-Directed Attention.

    Get PDF
    Attention can be oriented externally to the environment or internally to the mind, and can be derailed by interference from irrelevant information originating from either external or internal sources. However, few studies have explored the nature and underlying mechanisms of the interaction between different attentional orientations and different sources of interference. We investigated how externally- and internally-directed attention was impacted by external distraction, how this modulated internal distraction, and whether these interactions were affected by healthy aging. Healthy younger and older adults performed both an externally-oriented visual detection task and an internally-oriented mental rotation task, performed with and without auditory sound delivered through headphones. We found that the addition of auditory sound induced a significant decrease in task performance in both younger and older adults on the visual discrimination task, and this was accompanied by a shift in the type of distractions reported (from internal to external). On the internally-oriented task, auditory sound only affected performance in older adults. These results suggest that the impact of external distractions differentially impacts performance on tasks with internal, as opposed to external, attentional orientations. Further, internal distractibility is affected by the presence of external sound and increased suppression of internal distraction

    Influence of the Cortical Midline Structures on Moral Emotion and Motivation in Moral Decision-Making

    Get PDF
    The present study aims to examine the relationship between the cortical midline structures (CMS), which have been regarded to be associated with selfhood, and moral decision making processes at the neural level. Traditional moral psychological studies have suggested the role of moral self as the moderator of moral cognition, so activity of moral self would present at the neural level. The present study examined the interaction between the CMS and other moral-related regions by conducting psycho-physiological interaction analysis of functional images acquired while 16 subjects were solving moral dilemmas. Furthermore, we performed Granger causality analysis to demonstrate the direction of influences between activities in the regions in moral decision-making. We first demonstrate there are significant positive interactions between two central CMS seed regionsā€”i.e., the medial prefrontal cortex (MPFC) and posterior cingulate cortex (PCC)ā€”and brain regions associated with moral functioning including the cerebellum, brainstem, midbrain, dorsolateral prefrontal cortex, orbitofrontal cortex and anterior insula (AI); on the other hand, the posterior insula (PI) showed significant negative interaction with the seed regions. Second, several significant Granger causality was found from CMS to insula regions particularly under the moral-personal condition. Furthermore, significant dominant influence from the AI to PI was reported. Moral psychological implications of these findings are discussed. The present study demonstrated the significant interaction and influence between the CMS and morality-related regions while subject were solving moral dilemmas. Given that, activity in the CMS is significantly involved in human moral functioning
    • ā€¦
    corecore