2,309 research outputs found

    Context effects on second-language learning of tonal contrasts.

    Full text link
    Studies of lexical tone  learning generally focus on monosyllabic contexts, while reports of phonetic learning benefits associated with input variability are based largely on experienced learners. This study trained inexperienced learners on Mandarin tonal contrasts to test two hypotheses regarding the influence of context and variability on tone  learning. The first hypothesis was that increased phonetic variability of tones in disyllabic contexts makes initial tone  learning more challenging in disyllabic than monosyllabic words. The second hypothesis was that the learnability of a given tone varies across contexts due to differences in tonal variability. Results of a word learning experiment supported both hypotheses: tones were acquired less successfully in disyllables than in monosyllables, and the relative difficulty of disyllables was closely related to contextual tonal variability. These results indicate limited relevance of monosyllable-based data on Mandarin learning for the disyllabic majority of the Mandarin lexicon. Furthermore, in the short term, variability can diminish learning; its effects are not necessarily beneficial but dependent on acquisition stage and other learner characteristics. These findings thus highlight the importance of considering contextual variability and the interaction between variability and type of learner in the design, interpretation, and application of research on phonetic learning

    Pitch ability as an aptitude for tone learning

    Full text link
    Tone languages such as Mandarin use voice pitch to signal lexical contrasts, presenting a challenge for second/foreign language (L2) learners whose native languages do not use pitch in this manner. The present study examined components of an aptitude for mastering L2 lexical tone. Native English speakers with no previous tone language experience completed a Mandarin word learning task, as well as tests of pitch ability, musicality, L2 aptitude, and general cognitive ability. Pitch ability measures improved predictions of learning performance beyond musicality, L2 aptitude, and general cognitive ability and also predicted transfer of learning to new talkers. In sum, although certain nontonal measures help predict successful tone learning, the central components of tonal aptitude are pitch-specific perceptual measures

    Mandarin speech perception in combined electric and acoustic stimulation.

    Get PDF
    For deaf individuals with residual low-frequency acoustic hearing, combined use of a cochlear implant (CI) and hearing aid (HA) typically provides better speech understanding than with either device alone. Because of coarse spectral resolution, CIs do not provide fundamental frequency (F0) information that contributes to understanding of tonal languages such as Mandarin Chinese. The HA can provide good representation of F0 and, depending on the range of aided acoustic hearing, first and second formant (F1 and F2) information. In this study, Mandarin tone, vowel, and consonant recognition in quiet and noise was measured in 12 adult Mandarin-speaking bimodal listeners with the CI-only and with the CI+HA. Tone recognition was significantly better with the CI+HA in noise, but not in quiet. Vowel recognition was significantly better with the CI+HA in quiet, but not in noise. There was no significant difference in consonant recognition between the CI-only and the CI+HA in quiet or in noise. There was a wide range in bimodal benefit, with improvements often greater than 20 percentage points in some tests and conditions. The bimodal benefit was compared to CI subjects' HA-aided pure-tone average (PTA) thresholds between 250 and 2000 Hz; subjects were divided into two groups: "better" PTA (<50 dB HL) or "poorer" PTA (>50 dB HL). The bimodal benefit differed significantly between groups only for consonant recognition. The bimodal benefit for tone recognition in quiet was significantly correlated with CI experience, suggesting that bimodal CI users learn to better combine low-frequency spectro-temporal information from acoustic hearing with temporal envelope information from electric hearing. Given the small number of subjects in this study (n = 12), further research with Chinese bimodal listeners may provide more information regarding the contribution of acoustic and electric hearing to tonal language perception

    Pitch perception and production in congenital amusia: evidence from Cantonese speakers

    Get PDF
    This study investigated pitch perception and production in speech and music in individuals with congenital amusia (a disorder of musical pitch processing) who are native speakers of Cantonese, a tone language with a highly complex tonal system. Sixteen Cantonese-speaking congenital amusics and 16 controls performed a set of lexical tone perception, production, singing, and psychophysical pitch threshold tasks. Their tone production accuracy and singing proficiency were subsequently judged by independent listeners, and subjected to acoustic analyses. Relative to controls, amusics showed impaired discrimination of lexical tones in both speech and non-speech conditions. They also received lower ratings for singing proficiency, producing larger pitch interval deviations and making more pitch interval errors compared to controls. Demonstrating higher pitch direction identification thresholds than controls for both speech syllables and piano tones, amusics nevertheless produced native lexical tones with comparable pitch heights/contours and intelligibility as controls. Significant correlations were found between pitch threshold and lexical tone perception, music perception and production, but not between lexical tone perception and production for amusics. These findings provide further evidence that congenital amusia is domain-general language-independent pitch-processing deficit that is associated with severely impaired music perception and production, mildly impaired speech perception, and largely intact speech production

    Suprasegmental speech perception, working memory and reading comprehension in Cantonese-English bilingual children

    Get PDF
    This study set out to examine (a) lexical tone and stress perception by bilingual and monolingual children, (b) interrelationships between lexical pitches perception, general acoustic mechanism and working memory, and (c) the association between lexical tone awareness and Chinese text reading comprehension. Experiment 1 tested and compared the perception of Cantonese lexical tones, English lexical stress and nonlinguistic pitch between Cantonese-English bilingual and English monolingual children. The relationships between linguistic pitch perception, non-linguistic pitch perception and working memory were also examined among Cantonese-English bilingual children. Experiment 2 explored the relationship between Cantonese tone awareness and Chinese text reading comprehension skills. Results of this study illustrate differential performances in tone perception but similar performances in stress perception between bilinguals and monolinguals. In addition, inter-correlations were found between linguistic pitches perception, general acoustic mechanism, working memory and reading comprehension. These findings provide new insight to native and non-native perception of lexical pitches, and demonstrate an important link that exists between lexical tone awareness and reading comprehension.published_or_final_versionSpeech and Hearing SciencesBachelorBachelor of Science in Speech and Hearing Science

    Neural systems for auditory perception of lexical tones

    Get PDF
    Previous neuroimaging research on cognitive processing of speech tone has generated dramatically different patterns of findings. Even at the basic perception level, brain mapping studies of lexical tones have yielded inconsistent results. Apart from the data inconsistency problem, experimental materials in past studies of tone perception carried little or minimal lexical semantics, an important dimension that should not be dispensed with because speech tones serve to distinguish lexical meanings. The present study sought to examine the neural correlates of the perception of speech tone using lexically meaningful experimental stimuli. A simple lexical tone perception task was devised in which native Mandarin speakers were asked to judge whether or not the two syllables of an auditorily presented Chinese bisyllabic word had the same tone. We selected bisyllabic words as experimental stimuli because Chinese monosyllables often convey little or very vague meanings due to rampant homophony. We found that the left inferior frontal gyrus, the right middle temporal gyrus and bilateral superior temporal gyri are responsible for basic perception of linguistic pitches. Our interpretation of the data sees the left superior temporal gyrus as engaged in primary acoustic analysis of the auditory stimuli, while the right middle superior temporal gyrus and the left inferior frontal region are involved in both tonal and semantic processing of the language stimuli.postprin

    Temporal relation between top-down and bottom-up processing in lexical tone perception

    Get PDF
    Speech perception entails both top-down processing that relies primarily on language experience and bottom-up processing that depends mainly on instant auditory input. Previous models of speech perception often claim that bottom-up processing occurs in an early time window, whereas top-down processing takes place in a late time window after stimulus onset. In this paper, we evaluated the temporal relation of both types of processing in lexical tone perception. We conducted a series of event-related potential (ERP) experiments that recruited Mandarin participants and adopted three experimental paradigms, namely dichotic listening, lexical decision with phonological priming, and semantic violation. By systematically analyzing the lateralization patterns of the early and late ERP components that are observed in these experiments, we discovered that: auditory processing of pitch variations in tones, as a bottom-up effect, elicited greater right hemisphere activation; in contrast, linguistic processing of lexical tones, as a top-down effect, elicited greater left hemisphere activation. We also found that both types of processing co-occurred in both the early (around 200 ms) and late (around 300–500 ms) time windows, which supported a parallel model of lexical tone perception. Unlike the previous view that language processing is special and performed by dedicated neural circuitry, our study have elucidated that language processing can be decomposed into general cognitive functions (e.g., sensory and memory) and share neural resources with these functions.published_or_final_versio

    The perception of Cantonese lexical tones by early-deafened cochlear implantees

    Get PDF
    This study investigated whether cochlear implant users can identify Cantonese lexical tones, which differ primarily in their FO pattern. Seventeen early-deafened deaf children (age=4 years, 6 months to 8 years, 11 months; postoperative period = 11 - 41 months) took part in the study. Sixteen children were fitted with the Nucleus 24 cochlear implant system; one child was fitted with a Nucleus 22 implant. Participants completed a 2AFC picture identification task in which they identified one of the six contrastive Cantonese tones produced on the monosyllabic target word /ji/. Each target stimulus represented a concrete object and was presented within a carrier phrase in sentence-medial position. Group performance was significantly above chance for three contrasts. However, the cochlear implant listeners performed much worse than a 6 1/2-year-old, moderately hearing impaired control listener who was tested on the same task. These findings suggest that this group of cochlear implant users had great difficulty in extracting the pitch information needed to accurately identify Cantonese lexical tones. © 2002 Acoustical Society of America.published_or_final_versio
    • …
    corecore