2,148 research outputs found

    Consensus-based control for a network of diffusion PDEs with boundary local interaction

    Full text link
    In this paper the problem of driving the state of a network of identical agents, modeled by boundary-controlled heat equations, towards a common steady-state profile is addressed. Decentralized consensus protocols are proposed to address two distinct problems. The first problem is that of steering the states of all agents towards the same constant steady-state profile which corresponds to the spatial average of the agents initial condition. A linear local interaction rule addressing this requirement is given. The second problem deals with the case where the controlled boundaries of the agents dynamics are corrupted by additive persistent disturbances. To achieve synchronization between agents, while completely rejecting the effect of the boundary disturbances, a nonlinear sliding-mode based consensus protocol is proposed. Performance of the proposed local interaction rules are analyzed by applying a Lyapunov-based approach. Simulation results are presented to support the effectiveness of the proposed algorithms

    First order least squares method with weakly imposed boundary condition for convection dominated diffusion problems

    Full text link
    We present and analyze a first order least squares method for convection dominated diffusion problems, which provides robust L2 a priori error estimate for the scalar variable even if the given data f in L2 space. The novel theoretical approach is to rewrite the method in the framework of discontinuous Petrov - Galerkin (DPG) method, and then show numerical stability by using a key equation discovered by J. Gopalakrishnan and W. Qiu [Math. Comp. 83(2014), pp. 537-552]. This new approach gives an alternative way to do numerical analysis for least squares methods for a large class of differential equations. We also show that the condition number of the global matrix is independent of the diffusion coefficient. A key feature of the method is that there is no stabilization parameter chosen empirically. In addition, Dirichlet boundary condition is weakly imposed. Numerical experiments verify our theoretical results and, in particular, show our way of weakly imposing Dirichlet boundary condition is essential to the design of least squares methods - numerical solutions on subdomains away from interior layers or boundary layers have remarkable accuracy even on coarse meshes, which are unstructured quasi-uniform

    Flame Enhancement and Quenching in Fluid Flows

    Get PDF
    We perform direct numerical simulations (DNS) of an advected scalar field which diffuses and reacts according to a nonlinear reaction law. The objective is to study how the bulk burning rate of the reaction is affected by an imposed flow. In particular, we are interested in comparing the numerical results with recently predicted analytical upper and lower bounds. We focus on reaction enhancement and quenching phenomena for two classes of imposed model flows with different geometries: periodic shear flow and cellular flow. We are primarily interested in the fast advection regime. We find that the bulk burning rate v in a shear flow satisfies v ~ a*U+b where U is the typical flow velocity and a is a constant depending on the relationship between the oscillation length scale of the flow and laminar front thickness. For cellular flow, we obtain v ~ U^{1/4}. We also study flame extinction (quenching) for an ignition-type reaction law and compactly supported initial data for the scalar field. We find that in a shear flow the flame of the size W can be typically quenched by a flow with amplitude U ~ alpha*W. The constant alpha depends on the geometry of the flow and tends to infinity if the flow profile has a plateau larger than a critical size. In a cellular flow, we find that the advection strength required for quenching is U ~ W^4 if the cell size is smaller than a critical value.Comment: 14 pages, 20 figures, revtex4, submitted to Combustion Theory and Modellin

    A wildland fire model with data assimilation

    Full text link
    A wildfire model is formulated based on balance equations for energy and fuel, where the fuel loss due to combustion corresponds to the fuel reaction rate. The resulting coupled partial differential equations have coefficients that can be approximated from prior measurements of wildfires. An ensemble Kalman filter technique with regularization is then used to assimilate temperatures measured at selected points into running wildfire simulations. The assimilation technique is able to modify the simulations to track the measurements correctly even if the simulations were started with an erroneous ignition location that is quite far away from the correct one.Comment: 35 pages, 12 figures; minor revision January 2008. Original version available from http://www-math.cudenver.edu/ccm/report

    Targeted mixing in an array of alternating vortices

    Full text link
    Transport and mixing properties of passive particles advected by an array of vortices are investigated. Starting from the integrable case, it is shown that a special class of perturbations allows one to preserve separatrices which act as effective transport barriers, while triggering chaotic advection. In this setting, mixing within the two dynamical barriers is enhanced while long range transport is prevented. A numerical analysis of mixing properties depending on parameter values is performed; regions for which optimal mixing is achieved are proposed. Robustness of the targeted mixing properties regarding errors in the applied perturbation are considered, as well as slip/no-slip boundary conditions for the flow

    Chaotic mixing induced transitions in reaction-diffusion systems

    Full text link
    We study the evolution of a localized perturbation in a chemical system with multiple homogeneous steady states, in the presence of stirring by a fluid flow. Two distinct regimes are found as the rate of stirring is varied relative to the rate of the chemical reaction. When the stirring is fast localized perturbations decay towards a spatially homogeneous state. When the stirring is slow (or fast reaction) localized perturbations propagate by advection in form of a filament with a roughly constant width and exponentially increasing length. The width of the filament depends on the stirring rate and reaction rate but is independent of the initial perturbation. We investigate this problem numerically in both closed and open flow systems and explain the results using a one-dimensional "mean-strain" model for the transverse profile of the filament that captures the interplay between the propagation of the reaction-diffusion front and the stretching due to chaotic advection.Comment: to appear in Chaos, special issue on Chaotic Flo

    An adaptive octree finite element method for PDEs posed on surfaces

    Full text link
    The paper develops a finite element method for partial differential equations posed on hypersurfaces in RN\mathbb{R}^N, N=2,3N=2,3. The method uses traces of bulk finite element functions on a surface embedded in a volumetric domain. The bulk finite element space is defined on an octree grid which is locally refined or coarsened depending on error indicators and estimated values of the surface curvatures. The cartesian structure of the bulk mesh leads to easy and efficient adaptation process, while the trace finite element method makes fitting the mesh to the surface unnecessary. The number of degrees of freedom involved in computations is consistent with the two-dimension nature of surface PDEs. No parametrization of the surface is required; it can be given implicitly by a level set function. In practice, a variant of the marching cubes method is used to recover the surface with the second order accuracy. We prove the optimal order of accuracy for the trace finite element method in H1H^1 and L2L^2 surface norms for a problem with smooth solution and quasi-uniform mesh refinement. Experiments with less regular problems demonstrate optimal convergence with respect to the number of degrees of freedom, if grid adaptation is based on an appropriate error indicator. The paper shows results of numerical experiments for a variety of geometries and problems, including advection-diffusion equations on surfaces. Analysis and numerical results of the paper suggest that combination of cartesian adaptive meshes and the unfitted (trace) finite elements provide simple, efficient, and reliable tool for numerical treatment of PDEs posed on surfaces
    • …
    corecore