336 research outputs found

    A New Technique for the Design of Multi-Phase Voltage Controlled Oscillators

    Get PDF
    © 2017 World Scientific Publishing Company.In this work, a novel circuit structure for second-harmonic multi-phase voltage controlled oscillator (MVCO) is presented. The proposed MVCO is composed of (Formula presented.) ((Formula presented.) being an integer number and (Formula presented.)2) identical inductor–capacitor ((Formula presented.)) tank VCOs. In theory, this MVCO can provide 2(Formula presented.) different phase sinusoidal signals. A six-phase VCO based on the proposed structure is designed in a TSMC 0.18(Formula presented.)um CMOS process. Simulation results show that at the supply voltage of 0.8(Formula presented.)V, the total power consumption of the six-phase VCO circuit is about 1(Formula presented.)mW, the oscillation frequency is tunable from 2.3(Formula presented.)GHz to 2.5(Formula presented.)GHz when the control voltage varies from 0(Formula presented.)V to 0.8(Formula presented.)V, and the phase noise is lower than (Formula presented.)128(Formula presented.)dBc/Hz at 1(Formula presented.)MHz offset frequency. The proposed MVCO has lower phase noise, lower power consumption and more outputs than other related works in the literature.Peer reviewedFinal Accepted Versio

    A high speed serializer/deserializer design

    Get PDF
    A Serializer/Deserializer (SerDes) is a circuit that converts parallel data into a serial stream and vice versa. It helps solve clock/data skew problems, simplifies data transmission, lowers the power consumption and reduces the chip cost. The goal of this project was to solve the challenges in high speed SerDes design, which included the low jitter design, wide bandwidth design and low power design. A quarter-rate multiplexer/demultiplexer (MUX/DEMUX) was implemented. This quarter-rate structure decreases the required clock frequency from one half to one quarter of the data rate. It is shown that this significantly relaxes the design of the VCO at high speed and achieves lower power consumption. A novel multi-phase LC-ring oscillator was developed to supply a low noise clock to the SerDes. This proposed VCO combined an LC-tank with a ring structure to achieve both wide tuning range (11%) and low phase noise (-110dBc/Hz at 1MHz offset). With this structure, a data rate of 36 Gb/s was realized with a measured peak-to-peak jitter of 10ps using 0.18microm SiGe BiCMOS technology. The power consumption is 3.6W with 3.4V power supply voltage. At a 60 Gb/s data rate the simulated peak-to-peak jitter was 4.8ps using 65nm CMOS technology. The power consumption is 92mW with 2V power supply voltage. A time-to-digital (TDC) calibration circuit was designed to compensate for the phase mismatches among the multiple phases of the PLL clock using a three dimensional fully depleted silicon on insulator (3D FDSOI) CMOS process. The 3D process separated the analog PLL portion from the digital calibration portion into different tiers. This eliminated the noise coupling through the common substrate in the 2D process. Mismatches caused by the vertical tier-to-tier interconnections and the temperature influence in the 3D process were attenuated by the proposed calibration circuit. The design strategy and circuits developed from this dissertation provide significant benefit to both wired and wireless applications

    The Effect of DC Component on CMOS Injection-Coupled LC Quadrature Oscillator (IC-QO)

    Get PDF
    This paper creates a different insight to improve phase noise of Injection-Coupled quadrature oscillators (QOs). In fact, there are several phase noise functions and the important parameter is carrier power that considered here. The QO is analyzed and the mismatches between LC tanks that are the main proofs of phase error in this oscillator are shown. The main aim of this paper is focused on the reduction of phase noise by considering DC term. It is shown that the DC level which ignored in the most previous works is also important to improve phase noise by the carrier power. With due attention in the previous equations the phase noise can be reduced and the phase error can be cancelled or controlled by adjusting bias current. On the other hand as a result, is obtained that increasing of the drain current and the voltage of LC tank decrease the phase noise and the phase error simultaneously. To confirm the proposed idea and analysis, a 5.5 GHz QO is designed and simulated using 0.18µm TSMC CMOS technology. The simulation results show confirmation of the proposed idea

    Cmos Rotary Traveling Wave Oscillators (Rtwos)

    Get PDF
    Rotary Traveling Wave Oscillator (RTWO) represents a transmission line based technology for multi-gigahertz multiple phase clock generation. RTWO is known for providing low jitter and low phase noise signals but the issue of high power consumption is a major drawback in its application. Direction of wave propagation is random and is determined by the least resistance path in the absence of an external direction control circuit. The objective of this research is to address some of the problems of RTWO design, including high power consumption, uncertainty of propagation direction and optimization of design variables. Included is the modeling of RTWO for sensitivity, phase noise and power analysis. Research objectives were met through design, simulation and implementation. Different designs of RTWO in terms of ring size and number of amplifier stages were implemented and tested. Design tools employed include Agilent ADS, Cadence EDA, SONNET and Altium PCB Designer. Test chip was fabricated using IBM 0.18 μm RF CMOS technology. Performance measures of interest are tuning range, phase noise and power consumption. Agilent ADS and SONNET were used for electromagnetic modeling of transmission lines and electromagnetic field radiation. For each design, electromagnetic simulations were carried out followed by oscillation synthesis based on circuit simulation in Cadence Spectre. RTWO frequencies between 2 GHz and 12 GHz were measured based on the ring size of transmission lines. Simulated microstrip transmission line segments had a quality factor between 5.5 and 18. For the various designs, power consumption ranged from 20 mW to 120 mW. Measured phase noise ranged between -123 dBc/Hz and -87 dBc/Hz at 1 MHz offset. Development also included the design of a wide band buffer and a printed circuit board with high signal integrity for accurate measurement of oscillation frequency and other performance measures. Simulated performance, schematics and measurement results are presented

    Digital PLL for ISM applications

    Get PDF
    In modern transceivers, a low power PLL is a key block. It is known that with the evolution of technology, lower power and high performance circuitry is a challenging demand. In this thesis, a low power PLL is developed in order not to exceed 2mW of total power consumption. It is composed by small area blocks which is one of the main demands. The blocks that compose the PLL are widely abridged and the final solution is shown, showing why it is employed. The VCO block is a Current-Starved Ring Oscillator with a frequency range from 400MHz to 1.5GHz, with a 300μW to approximately 660μW power consumption. The divider is composed by six TSPC D Flip-Flop in series, forming a divide-by-64 divider. The Phase-Detector is a Dual D Flip-Flop detector with a charge pump. The PLL has less than a 2us lock time and presents a output oscillation of 1GHz, as expected. It also has a total power consumption of 1.3mW, therefore fulfilling all the specifications. The main contributions of this thesis are that this PLL can be applied in ISM applications due to its covering frequency range and low cost 130nm CMOS technology

    12???14.5 GHZ DIGITALLY CONTROLLED OSCILLATOR USING A HIGH-RESOLUTION DELTA-SIGMA DIGITAL-TO-ANALOG CONVERTER

    Get PDF
    Department of Electrical EngineeringThis thesis focuses on the design of digitally-controlled oscillators (DCO) for ultra-low-jitter digital phase-locked-loops (PLL), which requires very fine frequency resolution and low phase noise performance. Before going details of the design, fundamentals of the digital-to-analog converter (DAC), delta-sigma modulator (DSM), LC voltage-controlled oscillator (VCO) are discussed in Chapters 2, 3, and 4 respectively. Detailly, Chapter 2 begins with the basic operations of the digital-toanalog converters. Plus, several types of DACs and their properties are discussed. For instance, resistorbased DAC or current source-based DAC. In Chapter 3, the backgrounds of DSMs are presented. The reason why DSMs are indispensable components in fractional number generation is presented. The meaning of the randomization and noise shaping in DSMs is discussed then high-order noise shaping DSMs are explained as well. Chapter 4, starts with the LC tanks. Integrated passive components are introduced such as spiral inductors, metal-insulator-metal (MIM) capacitors, and metal-oxide-metal (MOM) capacitors. The start-up of the oscillators also explained by using two approaches, the Barkhausen criterion and the negative resistance theory. Then the pros and cons of the CMOS and NMOS type topologies are stated. Finally, the phase noise in oscillators is analyzed by using the Leeson???s equation and the impulse-sensitivity function theory. In chapter 5, the detailed designs of the prototype DCO are presented. The designed DCO consists of 2nd order DSM, string resistor-based DAC, and CMOS-type LC VCO. The frequency resolutions of the proportional and integral path are different but the structures are identical. For the high-performance oscillator, iterative design is required. In the measurements, the designed DCO achieved 17 and 18 bit of frequency resolution in the proportional and integral path respectively, 12-14.5GHz of the frequency tuning range, 50 and 500MHz/V of KVCO for the main and auxiliary loop respectively, and -184.5 dB of figure of merit (FOM). The power consumption is 5.5mW and the prototype was fabricated in TSMC 65nm CMOS process.clos

    Design of CMOS integrated frequency synthesizers for ultra-wideband wireless communications systems

    Get PDF
    Ultra¬wide band (UWB) system is a breakthrough in wireless communication, as it provides data rate one order higher than existing ones. This dissertation focuses on the design of CMOS integrated frequency synthesizer and its building blocks used in UWB system. A mixer¬based frequency synthesizer architecture is proposed to satisfy the agile frequency hopping requirement, which is no more than 9.5 ns, three orders faster than conventional phase¬locked loop (PLL)¬based synthesizers. Harmonic cancela¬tion technique is extended and applied to suppress the undesired harmonic mixing components. Simulation shows that sidebands at 2.4 GHz and 5 GHz are below 36 dBc from carrier. The frequency synthesizer contains a novel quadrature VCO based on the capacitive source degeneration structure. The QVCO tackles the jeopardous ambiguity of the oscillation frequency in conventional QVCOs. Measurement shows that the 5¬GHz CSD¬QVCO in 0.18 µm CMOS technology draws 5.2 mA current from a 1.2 V power supply. Its phase noise is ¬120 dBc at 3 MHz offset. Compared with existing phase shift LC QVCOs, the proposed CSD¬QVCO presents better phase noise and power efficiency. Finally, a novel injection locking frequency divider (ILFD) is presented. Im¬plemented with three stages in 0.18 µm CMOS technology, the ILFD draws 3¬mA current from a 1.8¬V power supply. It achieves multiple large division ratios as 6, 12, and 18 with all locking ranges greater than 1.7 GHz and injection frequency up to 11 GHz. Compared with other published ILFDs, the proposed ILFD achieves the largest division ratio with satisfactory locking range

    Phase Locked Loop (PLL) based Clock and Data Recovery Circuits (CDR) using Calibrated Delay Flip Flop

    Get PDF
    A Delay Flip Flop (DFF) is used in the phase detector circuit of the clock and data recovery circuit. A DFF consists of the three important timing parameters: setup time, hold time, and clock-to-output delay. These timing parameters play a vital role in designing a system at the transistor level. This thesis paper explains the impact of metastablity on the clock and data recovery (CDR) system and the importance of calibrating the DFF using a metastable circuit to improve a system\u27s lock time and peak-to-peak jitter performance. The DFF was modeled in MATLAB Simulink software and calibrated by adjusting timing parameters. The CDR system was simulated in Simulink for three different cases: 1) equal setup and hold times, 2) setup time greater than the hold time, and 3) hold time greater than the setup time. The Simulink results were then compared with the Cadence simulation results, and it was observed that the calibration of DFF using a metastable circuit improved the CDR system\u27s lock time and jitter tolerance performance. The overall power dissipation of the designed CDR system was 2.4 mW from a 1 volt supply voltage

    A CCO-based Sigma-Delta ADC

    Get PDF
    Analog-to-digital converter (ADC) is one of the most important blocks in nowadays systems. Most of the data processing is done in the digital domain however, the physical world is analog. ADCs make the bridge between analog and digital domain. The constant and unstoppable evolution of the technology makes the dimensions of the transistors smaller and smaller, and the classical solutions of Sigma-Delta converters (ΣΔ) are becoming more challenging to design because they normally require high active gain blocks difficult to achieve in modern technologies. In recent years, the use of voltage-controlled oscillators (VCO) in ΣΔ converters has been widely explored, since they are used as quantizers and their implementations are mostly made with digital blocks, which is preferable with new technologies. In this work a second-order ΣΔ modulator based on two current-controlled oscillators (CCO) with a single output phase and an independent phase generator for each CCO that generates any desired number of phases using the oscillation of its CCO as reference has been proposed. This ΣΔ modulator was studied through a MATLAB/Simulink® model, obtaining promising results with the SNDR in the order of 75 dB, at a sampling frequency of 1 GHz, and a bandwidth of 5 MHz, corresponding to an ENOB of, approximately, 12 bits
    corecore