34,820 research outputs found

    Use of leaning vanes in a two stage fan

    Get PDF
    The use of leaning vanes for tone noise reduction was examined in terms of their application in a typical two-stage high pressure ratio fan. In particular for stages designed with outlet guide vanes and zero swirl between stages, leaning the vanes of the first stage stator was studied, since increasing the number of vanes and the gap between stages do not provide the desired advantage. It was shown that noise reduction at higher harmonics of blade passing frequency can be obtained by leaning the vanes

    Feature detection using spikes: the greedy approach

    Full text link
    A goal of low-level neural processes is to build an efficient code extracting the relevant information from the sensory input. It is believed that this is implemented in cortical areas by elementary inferential computations dynamically extracting the most likely parameters corresponding to the sensory signal. We explore here a neuro-mimetic feed-forward model of the primary visual area (VI) solving this problem in the case where the signal may be described by a robust linear generative model. This model uses an over-complete dictionary of primitives which provides a distributed probabilistic representation of input features. Relying on an efficiency criterion, we derive an algorithm as an approximate solution which uses incremental greedy inference processes. This algorithm is similar to 'Matching Pursuit' and mimics the parallel architecture of neural computations. We propose here a simple implementation using a network of spiking integrate-and-fire neurons which communicate using lateral interactions. Numerical simulations show that this Sparse Spike Coding strategy provides an efficient model for representing visual data from a set of natural images. Even though it is simplistic, this transformation of spatial data into a spatio-temporal pattern of binary events provides an accurate description of some complex neural patterns observed in the spiking activity of biological neural networks.Comment: This work links Matching Pursuit with bayesian inference by providing the underlying hypotheses (linear model, uniform prior, gaussian noise model). A parallel with the parallel and event-based nature of neural computations is explored and we show application to modelling Primary Visual Cortex / image processsing. http://incm.cnrs-mrs.fr/perrinet/dynn/LaurentPerrinet/Publications/Perrinet04tau

    Arcfinder: An algorithm for the automatic detection of gravitational arcs

    Full text link
    We present an efficient algorithm designed for and capable of detecting elongated, thin features such as lines and curves in astronomical images, and its application to the automatic detection of gravitational arcs. The algorithm is sufficiently robust to detect such features even if their surface brightness is near the pixel noise in the image, yet the amount of spurious detections is low. The algorithm subdivides the image into a grid of overlapping cells which are iteratively shifted towards a local centre of brightness in their immediate neighbourhood. It then computes the ellipticity for each cell, and combines cells with correlated ellipticities into objects. These are combined to graphs in a next step, which are then further processed to determine properties of the detected objects. We demonstrate the operation and the efficiency of the algorithm applying it to HST images of galaxy clusters known to contain gravitational arcs. The algorithm completes the analysis of an image with 3000x3000 pixels in about 4 seconds on an ordinary desktop PC. We discuss further applications, the method's remaining problems and possible approaches to their solution.Comment: 12 pages, 12 figure

    Strapdown calibration and alignment study. Volume 2 - Procedural and parametric trade-off analyses document Final report

    Get PDF
    Parametric and procedural tradeoffs for alignment and calibration of inertial sensing uni

    Anomalous quantum Hall effect induced by disorder in topological insulators

    Full text link
    We investigate a transition between a two-dimensional topological insulator conduction state, characterized by a conductance G=2G=2 (in fundamental units e2/he^2/h) and a Chern insulator with G=1G=1, induced by polarized magnetic impurities. Two kinds of coupling, ferro and antiferromagnetic, are considered with the electron and hole subbands. We demonstrate that for strong disorder, a phase G=1G=1 exists even for ferromagnetic order, in contrast with the prediction of the mean field approximation. This result is supported by direct numerical computations using Landauer transport formula, and by analytical calculations of the chemical potential and mass renormalization as a function of the disorder strength, in the self-consistent Born approximation. The transition is related to the suppression of one of the spin conduction channels, for strong enough disorder, by selective spin scattering and localization.Comment: 9 pages, 4 figures (figs. 2 and 3 in low resolution

    The effects of disk and dust structure on observed polarimetric images of protoplanetary disks

    Full text link
    Imaging polarimetry is a powerful tool for imaging faint circumstellar material. For a correct analysis of observations we need to fully understand the effects of dust particle parameters, as well as the effects of the telescope, atmospheric seeing, and assumptions about the data reduction and processing of the observed signal. Here we study the major effects of dust particle structure, size-dependent grain settling, and instrumental properties. We performed radiative transfer modeling using different dust particle models and disk structures. To study the influence of seeing and telescope diffraction we ran the models through an instrument simulator for the ExPo dual-beam imaging polarimeter mounted at the 4.2m William Herschel Telescope (WHT). Particle shape and size have a strong influence on the brightness and detectability of the disks. In the simulated observations, the central resolution element also contains contributions from the inner regions of the protoplanetary disk besides the unpolarized central star. This causes the central resolution element to be polarized, making simple corrections for instrumental polarization difficult. This effect strongly depends on the spatial resolution, so adaptive optics systems are needed for proper polarization calibration. We find that the commonly employed homogeneous sphere model gives results that differ significantly from more realistic models. For a proper analysis of the wealth of data available now or in the near future, one must properly take the effects of particle types and disk structure into account. The observed signal depends strongly on the properties of these more realistic models, thus providing a potentially powerful diagnostic. We conclude that it is important to correctly understand telescope depolarization and calibration effects for a correct interpretation of the degree of polarization.Comment: Accepted for publication in A&

    A Metric for genus-zero surfaces

    Full text link
    We present a new method to compare the shapes of genus-zero surfaces. We introduce a measure of mutual stretching, the symmetric distortion energy, and establish the existence of a conformal diffeomorphism between any two genus-zero surfaces that minimizes this energy. We then prove that the energies of the minimizing diffeomorphisms give a metric on the space of genus-zero Riemannian surfaces. This metric and the corresponding optimal diffeomorphisms are shown to have properties that are highly desirable for applications.Comment: 33 pages, 8 figure
    • …
    corecore