261 research outputs found

    Quality-Latency Trade-Off in Bilateral Teleoperation

    Get PDF
    The purpose of this thesis is to investigate how the latency in mobile networks affect the quality of highly demanding and sensitive applications running on it. Furthermore, this thesis will provide some information to what is going on in the field of Cloud Computing and the Internet of Things. It will hopefully spark a discussion about what possibilities will come with the development of the Cloud and Internet of Things. The application chosen was a bilateral teleoperation, with force feedback, controlled in 6 dimensions. To investigate how the quality depends on network latency, different network models were simulated as the communication channel. The networks chosen to be simulated were a 3G, 4G, and a 5G cellular network along with a wired network chosen as a baseline. On this setup two main experiments were done. The first one was a collision test and the second one a dexterity test, where a user was supposed to pick up a small wooden brick and put it into a box. The results from the experiments showed that there was indeed a difference in behavior when having a network delay larger than 20 ms

    Study of the urban evolution of Brasilia with the use of LANDSAT data

    Get PDF
    The urban growth of Brasilia within the last ten years is analyzed with special emphasis on the utilization of remote sensing orbital data and automatic image processing. The urban spatial structure and the monitoring of its temporal changes were focused in a whole and dynamic way by the utilization of MSS-LANDSAT images for June 1973, 1978 and 1983. In order to aid data interpretation, a registration algorithm implemented at the Interactive Multispectral Image Analysis System (IMAGE-100) was utilized aiming at the overlap of multitemporal images. The utilization of suitable digital filters, combined with the images overlap, allowed a rapid identification of areas of possible urban growth and oriented the field work. The results obtained permitted an evaluation of the urban growth of Brasilia, taking as reference the proposed stated for the construction of the city

    An Energy-Based Approach for n-dof Passive Dual-user Haptic Training Systems

    Get PDF
    International audienceThis paper introduces a dual-user training system whose design is based on an energetic approach. This kind of system is useful for supervised hands-on training where a trainer interacts with a trainee through two haptic devices, in order to practice on a manual task performed on a virtual or teleoperated robot (for example for an MIS task in a surgical context). This paper details the proof of stability of an Energy Shared Control (ESC) architecture we previously introduced for one degree of freedom (d.o.f.) devices. An extension to multiple degrees of freedom is proposed, along with an enhanced version of the Adaptive Authority Adjustment (AAA) function. Experiments are carried out with 3 d.o.f. haptic devices in free motion as well as in contact contexts in order to show the relevance of this architecture

    A prototype telerobotic platform for live transmission line maintenance: review of design and development.

    Get PDF
    This paper reports technical design of a novel experimental test facility, using haptic-enabled teleoperation of robotic manipulators, for live transmission line maintenance. The goal is to study and develop appropriate techniques in repair overhead power transmission lines by allowing linemen to wirelessly guide a remote manipulator, installed on a crane bucket, to execute dexterous maintenance tasks, such as twisting a tie wire around a cable. Challenges and solutions for developing such a system are outlined. The test facility consists of a PHANToM Desktop haptic device (master site), an industrial hydraulic manipulator (slave site) mounted atop a Stewart platform, and a wireless communication channel connecting the master and slave sites. The teleoperated system is tested under different force feedback schemes, while the base is excited and the communication channel is delayed and/or lossy to emulate realistic network behaviors. The force feedback schemes are: virtual fixture, augmentation force and augmented virtual fixture. Performance of each scheme is evaluated under three measures: task completion time, number of failed trials and displacement of the slave manipulator end-effector. The developed test rig has been shown to be successful in performing haptic-enabled teleoperation for live-line maintenance in a laboratory setting. The authors aim at establishing a benchmark test facility for objective evaluation of ideas and concepts in the teleoperation of live-line maintenance tasks

    Architectural study of the design and operation of advanced force feedback manual controllers

    Get PDF
    A teleoperator system consists of a manual controller, control hardware/software, and a remote manipulator. It was employed in either hazardous or unstructured, and/or remote environments. In teleoperation, the main-in-the-loop is the central concept that brings human intelligence to the teleoperator system. When teleoperation involves contact with an uncertain environment, providing the feeling of telepresence to the human operator is one of desired characteristics of the teleoperator system. Unfortunately, most available manual controllers in bilateral or force-reflecting teleoperator systems can be characterized by their bulky size, high costs, or lack of smoothness and transparency, and elementary architectures. To investigate other alternatives, a force-reflecting, 3 degree of freedom (dof) spherical manual controller is designed, analyzed, and implemented as a test bed demonstration in this research effort. To achieve an improved level of design to meet criteria such as compactness, portability, and a somewhat enhanced force-reflecting capability, the demonstration manual controller employs high gear-ratio reducers. To reduce the effects of the inertia and friction on the system, various force control strategies are applied and their performance investigated. The spherical manual controller uses a parallel geometry to minimize inertial and gravitational effects on its primary task of transparent information transfer. As an alternative to the spherical 3-dof manual controller, a new conceptual (or parallel) spherical 3-dof module is introduced with a full kinematic analysis. Also, the resulting kinematic properties are compared to those of other typical spherical 3-dof systems. The conceptual design of a parallel 6-dof manual controller and its kinematic analysis is presented. This 6-dof manual controller is similar to the Stewart Platform with the actuators located on the base to minimize the dynamic effects. Finally, a combination of the new 3-dof and 6-dof concepts is presented as a feasible test-bed for enhanced performance in a 9-dof system

    Haptics-Enabled Teleoperation for Robotics-Assisted Minimally Invasive Surgery

    Get PDF
    The lack of force feedback (haptics) in robotic surgery can be considered to be a safety risk leading to accidental tissue damage and puncturing of blood vessels due to excessive forces being applied to tissue and vessels or causing inefficient control over the instruments because of insufficient applied force. This project focuses on providing a satisfactory solution for introducing haptic feedback in robotics-assisted minimally invasive surgical (RAMIS) systems. The research addresses several key issues associated with the incorporation of haptics in a master-slave (teleoperated) robotic environment for minimally invasive surgery (MIS). In this project, we designed a haptics-enabled dual-arm (two masters - two slaves) robotic MIS testbed to investigate and validate various single-arm as well as dual-arm teleoperation scenarios. The most important feature of this setup is the capability of providing haptic feedback in all 7 degrees of freedom (DOF) required for RAMIS (3 translations, 3 rotations and pinch motion of the laparoscopic tool). The setup also enables the evaluation of the effect of replacing haptic feedback by other sensory cues such as visual representation of haptic information (sensory substitution) and the hypothesis that surgical outcomes may be improved by substituting or augmenting haptic feedback by such sensory cues

    Observer based dynamic control model for bilaterally controlled MU-lapa robot: Surgical tool force limiting

    Get PDF
    During laparoscopic surgeries, primary surgical tool insertion is the demanding and strenuous task. As the surgeon is unaware of the type of the tissue and associated parameters to conduct the insertion, therefore, to ease the procedure, the movement of the surgical tool needs to be controlled. It’s the operational capabilities that are to be manipulated to perform a smooth surgery even from a distant location. In this study, a robot system is being introduced for laparoscopic primary surgical tool insertion. It will incorporate a novel observer based dynamic control along with robot assisted bilateral control. Moreover, a virtual spring damper force lock system is introduced through which the slave system will notify the master regarding the target achieved and excessive force. The validation of the proposed control system is experimented with bilaterally controlled MU-LapaRobot. The experiment is comprising 3 cases of bilateral control criteria which are non-contact motion, contact motion, and limit force locking. The results defined the same value for contact and non-contact motion by 0.3N. The results depicted a force error of 3.6% and a position error of 5.8% which validated the proposed algorithm
    corecore