183 research outputs found

    Natural Walking in Virtual Reality:A Review

    Get PDF

    Haptic ankle platform for interactive walking in virtual reality.

    Get PDF
    This paper presents an impedance type ankle haptic interface for providing users with an immersive navigation experience in virtual reality (VR). The ankle platform actuated by an electric motor with feedback control enables the use of foot-tapping gestures to create a walking experience similar to a real one and to haptically render different types of walking terrains. Experimental studies demonstrated that the interface can be easily used to generate virtual walking and it is capable to render terrains such as hard and soft surfaces, and multi-layer complex dynamic terrains. The designed system is a seated-type VR locomotion interface, therefore allowing its user to maintain a stable seated posture to comfortably navigate a virtual scene

    An evaluation testbed for locomotion in virtual reality

    Get PDF
    A common operation performed in Virtual Reality (VR) environments is locomotion. Although real walking can represent a natural and intuitive way to manage displacements in such environments, its use is generally limited by the size of the area tracked by the VR system (typically, the size of a room) or requires expensive technologies to cover particularly extended settings. A number of approaches have been proposed to enable effective explorations in VR, each characterized by different hardware requirements and costs, and capable to provide different levels of usability and performance. However, the lack of a well-defined methodology for assessing and comparing available approaches makes it difficult to identify, among the various alternatives, the best solutions for selected application domains. To deal with this issue, this paper introduces a novel evaluation testbed which, by building on the outcomes of many separate works reported in the literature, aims to support a comprehensive analysis of the considered design space. An experimental protocol for collecting objective and subjective measures is proposed, together with a scoring system able to rank locomotion approaches based on a weighted set of requirements. Testbed usage is illustrated in a use case requesting to select the technique to adopt in a given application scenario

    Redirected Free Exploration with Distractors: A Large-Scale Real-Walking Locomotion Interface

    Get PDF
    Immersive Virtual Environments (VEs) enable user controlled interactions within the environment such as head-controlled point-of-view and user-controlled locomotion. In the real world people usually locomote by walking; walking is simple and natural, and enables people not only to move between locations, but also to develop cognitive maps, or mental representations, of environments. People navigate every day in the real world without problem, however users navigating VEs often become disoriented and frustrated, and find it challenging to transfer spatial knowledge acquired in the VE to the real world. In this dissertation I develop and demonstrate the effectiveness of a new locomotion interface, Redirected Free Exploration with Distractors (RFED) that enables people to freely walk in large scale VEs. RFED is the combination of distractors--objects, sounds, or combinations of objects and sounds in the VE that encourage people to turn their heads, and redirection--making the user turn herself by interactively and imperceptibly rotating the virtual scene about her while she is turning her head. I demonstrate through user studies that compare RFED to a real-walking locomotion interface that RFED does not diminish user ability to navigate. I further demonstrate that users navigate better in RFED than with joystick and walking-in-place locomotion interfaces. Additionally, RFED does not significantly increase simulator sickness when compared to real walking, walking-in-place, and joystick interfaces.Doctor of Philosoph

    An expandable walking in place platform

    Get PDF
    The control of locomotion in 3D virtual environments should be an ordinary task, from the user point-of-view. Several navigation metaphors have been explored to control locomotion naturally, such as: real walking, the use of simulators, and walking in place. These have proven that the more natural the approach used to control locomotion, the more immerse the user will feel inside the virtual environment. Overcoming the high cost and complexity for the use of most approaches in the field, we introduce a walking in place platform that is able to identify orientation, speed for displacement, as well as lateral steps, of a person mimicking walking pattern. The detection of this information is made without use of additional sensors attached to user body. Our device is simple to mount, inexpensive and allows almost natural use, with lazy steps, thus releasing the hands for other uses. Also, we explore and test a passive, tactile surface for safe use of our platform. The platform was conceived to be utilized as an interface to control navigation in virtual environments, and augmented reality. Extending our device and techniques, we have elaborated a redirection walking metaphor, to be used together with a cave automatic virtual environment. Another metaphor allowed the use of our technique for navigating in point clouds for tagging of data. We tested the use of our technique associated with two different navigation modes: human walking and vehicle driving. In the human walking approach, the virtual orientation inhibits the displacement when sharp turns are made by the user. In vehicle mode, the virtual orientation and displacement occur together, more similar to a vehicle driving approach. We applied tests to detect preferences of navigation mode and ability to use our device to 52 subjects. We identified a preference for the vehicle driving mode of navigation. The use of statistics revealed that users learned easily the use of our technique for navigation. Users were faster walking in vehicle mode; but human mode allowed precise walking in the virtual test environment. The tactile platform proved to allow safe use of our device, being an effective and simple solution for the field. More than 200 people tested our device: UFRGS Portas Abertas in 2013 and 2014, which was a event to present to local community academic works; during 3DUI 2014, where our work was utilized together with a tool for point cloud manipulation. The main contributions of our work are a new approach for detection of walking in place, which allows simple use, with naturalness of movements, expandable for utilization in large areas (such as public spaces), and that efficiently supply orientation and speed to use in virtual environments or augmented reality, with inexpensive hardware.O controle da locomoção em ambientes virtuais 3D deveria ser uma tarefa simples, do ponto de vista do usuário. Durante os anos, metáforas para navegação têm sido exploradas para permitir o controle da locomoção naturalmente, tais como: caminhada real; uso de simuladores e imitação de caminhada. Estas técnicas provaram que, quanto mais natural à abordagem utilizada para controlar a locomoção, mais imerso o usuário vai se sentir dentro do ambiente virtual. Superando o alto custo e complexidade de uso da maioria das abordagens na área, introduzimos uma plataforma para caminhada no lugar, (usualmente reportado como wal king in place), que é capaz de identificar orientação, velocidade de deslocamento, bem como passos laterais, de uma pessoa imitando a caminhada. A detecção desta informação é feita sem o uso de sensores presos no corpo dos usuários, apenas utilizando a plataforma. Nosso dispositivo é simples de montar, barato e permite seu uso por pessoas comuns de forma quase natural, com passos pequenos, assim deixando as mãos livres para outras tarefas. Nós também exploramos e testamos uma superfície táctil passiva para utilização segura de nossa plataforma. A plataforma foi concebida para ser utilizada como uma interface para navegação em ambientes virtuais. Estendendo o uso de nossa técnica e dis positivo, nós elaboramos uma metáfora para caminhada redirecionada, para ser utilizada em conjunto com cavernas de projeção, (usualmente reportado como Cave automatic vir tual environment (CAVE)). Criamos também uma segunda metáfora para navegação, a qual permitiu o uso de nossa técnica para navegação em nuvem de pontos, auxiliando no processo de etiquetagem destes, como parte da competição para o 3D User Interface que ocorreu em Minessota, nos Estados Unidos, em 2014. Nós testamos o uso da técnica e dispositivos associada com duas nuances de navegação: caminhada humana e controle de veiculo. Na abordagem caminhada humana, a taxa de mudança da orientação gerada pelo usuário ao utilizar nosso dispositivo, inibia o deslocamento quando curvas agudas eram efetuadas. No modo veículo, a orientação e o deslocamento ocorriam conjuntamente quando o usuário utilizava nosso dispositivo e técnicas, similarmente ao processo de controle de direção de um veículo. Nós aplicamos testes para determinar o modo de navegação de preferencia para uti lização de nosso dispositivo, em 52 sujeitos. Identificamos uma preferencia pelo modo de uso que se assimila a condução de um veículo. Testes estatísticos revelaram que os usuários aprenderam facilmente a usar nossa técnica para navegar em ambientes virtuais. Os usuários foram mais rápidos utilizando o modo veículo, mas o modo humano garantiu maior precisão no deslocamento no ambiente virtual. A plataforma táctil provou permi tir o uso seguro de nosso dispositivo, sendo uma solução efetiva e simples para a área. Mais de 200 pessoas testaram nosso dispositivo e técnicas: no evento Portas Abertas da UFRGS em 2013 e 2014, um evento onde são apresentados para a comunidade local os trabalhos executados na universidade; e no 3D User Interface, onde nossa técnica e dis positivos foram utilizados em conjunto com uma ferramenta de seleção de pontos numa competição. As principais contribuições do nosso trabalho são: uma nova abordagem para de tecção de imitação de caminhada, a qual permite um uso simples, com naturalidade de movimentos, expansível para utilização em áreas grandes, como espaços públicos e que efetivamente captura informações de uso e fornece orientação e velocidade para uso em ambientes virtuais ou de realidade aumentada, com uso de hardware barato

    Computational interaction techniques for 3D selection, manipulation and navigation in immersive VR

    Get PDF
    3D interaction provides a natural interplay for HCI. Many techniques involving diverse sets of hardware and software components have been proposed, which has generated an explosion of Interaction Techniques (ITes), Interactive Tasks (ITas) and input devices, increasing thus the heterogeneity of tools in 3D User Interfaces (3DUIs). Moreover, most of those techniques are based on general formulations that fail in fully exploiting human capabilities for interaction. This is because while 3D interaction enables naturalness, it also produces complexity and limitations when using 3DUIs. In this thesis, we aim to generate approaches that better exploit the high potential human capabilities for interaction by combining human factors, mathematical formalizations and computational methods. Our approach is focussed on the exploration of the close coupling between specific ITes and ITas while addressing common issues of 3D interactions. We specifically focused on the stages of interaction within Basic Interaction Tasks (BITas) i.e., data input, manipulation, navigation and selection. Common limitations of these tasks are: (1) the complexity of mapping generation for input devices, (2) fatigue in mid-air object manipulation, (3) space constraints in VR navigation; and (4) low accuracy in 3D mid-air selection. Along with two chapters of introduction and background, this thesis presents five main works. Chapter 3 focusses on the design of mid-air gesture mappings based on human tacit knowledge. Chapter 4 presents a solution to address user fatigue in mid-air object manipulation. Chapter 5 is focused on addressing space limitations in VR navigation. Chapter 6 describes an analysis and a correction method to address Drift effects involved in scale-adaptive VR navigation; and Chapter 7 presents a hybrid technique 3D/2D that allows for precise selection of virtual objects in highly dense environments (e.g., point clouds). Finally, we conclude discussing how the contributions obtained from this exploration, provide techniques and guidelines to design more natural 3DUIs

    Walking with virtual humans : understanding human response to virtual humanoids' appearance and behaviour while navigating in immersive VR

    Get PDF
    In this thesis, we present a set of studies whose results have allowed us to analyze how to improve the realism, navigation, and behaviour of the avatars in an immersive virtual reality environment. In our simulations, participants must perform a series of tasks and we have analyzed perceptual and behavioural data. The results of the studies have allowed us to deduce what improvements are needed to be incorporated to the original simulations, in order to enhance the perception of realism, the navigation technique, the rendering of the avatars, their behaviour or their animations. The most reliable technique for simulating avatars’ behaviour in a virtual reality environment should be based on the study of how humans behave within the environment. For this purpose, it is necessary to build virtual environments where participants can navigate safely and comfortably with a proper metaphor and, if the environment is populated with avatars, simulate their behaviour accurately. All these aspects together will make the participants behave in a way that is closer to how they would behave in the real world. Besides, the integration of these concepts could provide an ideal platform to develop different types of applications with and without collaborative virtual reality such as emergency simulations, teaching, architecture, or designing. In the first contribution of this thesis, we carried out an experiment to study human decision making during an evacuation. We were interested to evaluate to what extent the behaviour of a virtual crowd can affect individuals' decisions. From the second contribution, in which we studied the perception of realism with bots and humans performing just locomotion or varied animations, we can conclude that the combination of having human-like avatars with animation variety can increase the overall realism of a crowd simulation, trajectories and animation. The preliminary study presented in the third contribution of this thesis showed that realistic rendering of the environment and the avatars do not appear to increase the perception of realism in the participants, which is consistent with works presented previously. The preliminary results in our walk-in-place contribution showed a seamless and natural transition between walk-in-place and normal walk. Our system provided a velocity mapping function that closely resembles natural walk. We observed through a pilot study that the system successfully reduces motion sickness and enhances immersion. Finally, the results of the contribution related to locomotion in collaborative virtual reality showed that animation synchronism and footstep sound of the avatars representing the participants do not seem to have a strong impact in terms of presence and feeling of avatar control. However, in our experiment, incorporating natural animations and footstep sound resulted in smaller clearance values in VR than previous work in the literature. The main objective of this thesis was to improve different factors related to virtual reality experiences to make the participants feel more comfortable in the virtual environment. These factors include the behaviour and appearance of the virtual avatars and the navigation through the simulated space in the experience. By increasing the realism of the avatars and facilitating navigation, high scores in presence are achieved during the simulations. This provides an ideal framework for developing collaborative virtual reality applications or emergency simulations that require participants to feel as if they were in real life.En aquesta tesi, es presenta un conjunt d'estudis els resultats dels quals ens han permès analitzar com millorar el realisme, la navegació i el comportament dels avatars en un entorn de realitat virtual immersiu. En les nostres simulacions, els participants han de realitzar una sèrie de tasques i hem analitzat dades perceptives i de comportament mentre les feien. Els resultats dels estudis ens han permès deduir quines millores són necessàries per a ser incorporades a les simulacions originals, amb la finalitat de millorar la percepció del realisme, la tècnica de navegació, la representació dels avatars, el seu comportament o les seves animacions. La tècnica més fiable per simular el comportament dels avatars en un entorn de realitat virtual hauria de basar-se en l'estudi de com es comporten els humans dins de l¿entorn virtual. Per a aquest propòsit, és necessari construir entorns virtuals on els participants poden navegar amb seguretat i comoditat amb una metàfora adequada i, si l¿entorn està poblat amb avatars, simular el seu comportament amb precisió. Tots aquests aspectes junts fan que els participants es comportin d'una manera més pròxima a com es comportarien en el món real. A més, la integració d'aquests conceptes podria proporcionar una plataforma ideal per desenvolupar diferents tipus d'aplicacions amb i sense realitat virtual col·laborativa com simulacions d'emergència, ensenyament, arquitectura o disseny. En la primera contribució d'aquesta tesi, vam realitzar un experiment per estudiar la presa de decisions durant una evacuació. Estàvem interessats a avaluar en quina mesura el comportament d'una multitud virtual pot afectar les decisions dels participants. A partir de la segona contribució, en la qual estudiem la percepció del realisme amb robots i humans que realitzen només una animació de caminar o bé realitzen diverses animacions, vam arribar a la conclusió que la combinació de tenir avatars semblants als humans amb animacions variades pot augmentar la percepció del realisme general de la simulació de la multitud, les seves trajectòries i animacions. L'estudi preliminar presentat en la tercera contribució d'aquesta tesi va demostrar que la representació realista de l¿entorn i dels avatars no semblen augmentar la percepció del realisme en els participants, que és coherent amb treballs presentats anteriorment. Els resultats preliminars de la nostra contribució de walk-in-place van mostrar una transició suau i natural entre les metàfores de walk-in-place i caminar normal. El nostre sistema va proporcionar una funció de mapatge de velocitat que s'assembla molt al caminar natural. Hem observat a través d'un estudi pilot que el sistema redueix amb èxit el motion sickness i millora la immersió. Finalment, els resultats de la contribució relacionada amb locomoció en realitat virtual col·laborativa van mostrar que el sincronisme de l'animació i el so dels avatars que representen els participants no semblen tenir un fort impacte en termes de presència i sensació de control de l'avatar. No obstant això, en el nostre experiment, la incorporació d'animacions naturals i el so de passos va donar lloc a valors de clearance més petits en RV que treballs anteriors ja publicats. L'objectiu principal d'aquesta tesi ha estat millorar els diferents factors relacionats amb experiències de realitat virtual immersiva per fer que els participants se sentin més còmodes en l'entorn virtual. Aquests factors inclouen el comportament i l'aparença dels avatars i la navegació a través de l'entorn virtual. En augmentar el realisme dels avatars i facilitar la navegació, s'aconsegueixen altes puntuacions en presència durant les simulacions. Això proporciona un marc ideal per desenvolupar aplicacions col·laboratives de realitat virtual o simulacions d'emergència que requereixen que els participants se sentin com si estiguessin en la vida realPostprint (published version
    corecore