8,684 research outputs found

    Distributed QoS Guarantees for Realtime Traffic in Ad Hoc Networks

    Get PDF
    In this paper, we propose a new cross-layer framework, named QPART ( QoS br>rotocol for Adhoc Realtime Traffic), which provides QoS guarantees to real-time multimedia applications for wireless ad hoc networks. By adapting the contention window sizes at the MAC layer, QPART schedules packets of flows according to their unique QoS requirements. QPART implements priority-based admission control and conflict resolution to ensure that the requirements of admitted realtime flows is smaller than the network capacity. The novelty of QPART is that it is robust to mobility and variances in channel capacity and imposes no control message overhead on the network

    Active Queue Management for Fair Resource Allocation in Wireless Networks

    Get PDF
    This paper investigates the interaction between end-to-end flow control and MAC-layer scheduling on wireless links. We consider a wireless network with multiple users receiving information from a common access point; each user suffers fading, and a scheduler allocates the channel based on channel quality,but subject to fairness and latency considerations. We show that the fairness property of the scheduler is compromised by the transport layer flow control of TCP New Reno. We provide a receiver-side control algorithm, CLAMP, that remedies this situation. CLAMP works at a receiver to control a TCP sender by setting the TCP receiver's advertised window limit, and this allows the scheduler to allocate bandwidth fairly between the users

    Queue utilization with hop based enhanced arbitrary inter frame spacing MAC for saturated ad HOC networks

    Get PDF
    © 2015 IEEE. Path length of a multi hop Ad Hoc networks has an adverse impact on the end-to-end throughput especially during network saturation. The success rate of forwarding packets towards destination is limited due to interference, contention, limited buffer space, and bandwidth. Real time applications streaming data fill the buffer space at a faster rate at the source and its nearby forwarding nodes since the channel is shared. The aim of this paper is to increase the success rate of forwarding the packets to yield a higher end-to-end throughput. In order to reduce loss of packets due to buffer overflow and enhance the performance of the network for a saturated network, a novel MAC protocol named Queue Utilization with Hop Based Enhanced Arbitrary Inter Frame Spacing based (QU-EAIFS) MAC is proposed for alleviating the problems in saturated Ad Hoc networks. The protocol prioritises the nodes based on its queue utilization and hops travelled by the packet and it helps achieving higher end-toend performance by forwarding the packets with higher rate towards the destination during network saturation. The proposed MAC enhances the end-to-end performance by approximately 40% and 34% for a 5hop and 6hop communication respectively in a chain topology as compared to the standard IEEE802.11b. The performance of the new MAC also outperforms the performance of IEEE 802.11e MAC. In order to validate the protocol, it is also tested with short hops and varying packet sizes and more realistic random topologies

    A cross-layer heuristic algorithm for addressing shadowing problem in optical attocell networks

    Get PDF
    The performance of visible light communication (VLC)-based optical attocell networks degrades due to shadowing caused by opaque objects. In order to improve reliability, we propose a cross-layer algorithm to find the optimal routing and resource allocation schemes when shadowing occurs. Simulation results show that the optimal scheme found by the proposed algorithm significantly improves the performance of optical attocell networks with one randomly shadowed link

    Resource Allocation for Network-Integrated Device-to-Device Communications Using Smart Relays

    Full text link
    With increasing number of autonomous heterogeneous devices in future mobile networks, an efficient resource allocation scheme is required to maximize network throughput and achieve higher spectral efficiency. In this paper, performance of network-integrated device-to-device (D2D) communication is investigated where D2D traffic is carried through relay nodes. An optimization problem is formulated for allocating radio resources to maximize end-to-end rate as well as conversing QoS requirements for cellular and D2D user equipment under total power constraint. Numerical results show that there is a distance threshold beyond which relay-assisted D2D communication significantly improves network performance when compared to direct communication between D2D peers
    corecore