17 research outputs found

    A Finite Element approach to understanding constitutive elasto-plastic, visco-plastic behaviour in lead free micro-electronic BGA structures

    Get PDF
    This work investigates the non-linear elasto-plastic and visco-plastic behaviour of lead free solder material and soldered joints. Specifically, Finite Element (FE) tools were used to better understand the deformations within Ball Grid Array solder joints (BGA), and numerical and analytical methods were developed to quantify the identified constituent deformations. FE material models were based on the same empirical constitutive models (elastic, plastic and creep) used in analytical calculations. The current work recognises the large number of factors influencing material behaviour which has led to a wide range of published material properties for near eutectic SnAgCu alloys. The work discovered that the deformation within the BGA was more complex than is generally assumed in the literature. It was shown that shear deformation of the solder ball could account for less than 5% of total measured displacement in BGA samples. Shear displacement and rotation of the solder balls relative to the substrate are sensitive to the substrate orthotropic properties and substrate geometry (relative to solder volume and array pattern). The FE modelling was used to derive orthotropic FR4 properties independently using published data. An elastic modulus for Sn3.8Ag0.7Cu was measured using homologous temperatures below 0.3. Suggested values of Abaqus-specific creep parameters m and f (not found in literature) for Sn3.8Ag0.7Cu have been validated with published data. Basic verification against simple analytical calculations has given a better understanding of the components of overall specimen displacement that is normally missing from empirical validation alone. A combined approach of numerical and analytical modelling of BGAs, and mechanical tests, is recommended to harmonise published work, exploit new material data and for more informed analysis of new configurationsEPSRC-funded PhD studentshi

    Activity of halide-free flux at copper and tin surfaces

    Get PDF
    The activity of halogen-free carboxylic acid flux is considered one of the most important aspects in controlling flip chip joint quality recently. In this work, we examined the CuOx removal effectiveness of carboxylic acid solutions at Cu substrates using electrochemical methods at elevated temperatures from 100ºC to 180ºC. Reaction kinetics of CuOx removal were investigated by chronopotentiometry and gravimetric analysis. FTIR was used to study the surface chemistry, and spectrophotometry was used to understand reactant and product solubility. Kinetics of carboxylic acid solution such as adipic acid or maleic acid in polyethylene glycol (PEG) with and without complexing agents such as ethanolamine was investigated. Carboxylic acid-based solutions with ethanolamine show oxide removal rates similar to hydrochloric acid solutions at temperatures above 140ºC. Results indicate the combination of proton-donating complexing agents with carboxylic acids can increase oxide removal rates an order of magnitude over solutions without complexing agents. Sn (II) and Sn (IV) voltammetry shows Sn2+ and Sn4+ can form Sn-carboxylate complex and dissolve into the solution. XPS results indicate under high temperature (180 ºC) and relatively low pH (~2.50), carboxylic acid can clean the surface of Sn as well as halide acid. Equilibrium coefficients between the complexes are obtained and potential-pH diagrams for adipic acid and maleic acid in PEG are presented

    Modeling the SAC microstructure evolution under thermal, thermomechanical and electrical constraints

    Get PDF
    [no abstract

    Multiscale Modeling of the Anisotropic Creep Response of SnAgCu Single Crystal

    Get PDF
    The lack of statistical homogeneity in functional SnAgCu (SAC) solder joints due to their coarse grained microstructure, in conjunction with the severe anisotropy exhibited by single crystal Sn, renders each joint unique in terms of mechanical behavior. An anisotropic multiscale modeling framework is proposed in this dissertation to capture the influence of the inherent elastic anisotropy and grain orientation in single crystal Sn on the primary and secondary creep response of single crystal SnAgCu (SAC) solder. Modeling of microstructural deformation mechanisms in SnAgCu (SAC) solder interconnects requires a multiscale approach because of tiered microstructural heterogeneities. The smallest length scale (Tier 0) refers to the Body Centered Tetragonal (BCT) structure of the Sn matrix itself because it governs: (1) the associated dislocation slip systems, (2) dislocation line tension (3) dislocation mobility and (4) intrinsic orthotropy of mechanical properties in the crystal principal axis system. The next higher length scale, (Tier 1), consists of nanoscale Ag3Sn intermetallic compounds (IMCs) surrounded by Body Centered Tetragonal (BCT) Sn to form the eutectic Sn-Ag phase. The next higher length scale (Tier 2) consists of micron scale lobes of pro-eutectic Sn dendrites surrounded by eutectic Sn-Ag regions and reinforced with micron scale Cu6Sn5 IMCs. Unified modeling of above two length scales provides constitutive properties for SAC single crystal. Tier 3 in coarse-grained solder joints consists of multiple SAC crystals along with grain boundaries. Finally, Tier 4 consists of the structural length scale of the solder joint. Line tension and mobility of dislocations (Tier 0) in dominant slip systems of single crystal Sn are captured for the elastic crystal anisotropy of body centered tetragonal (BCT) Sn by using Stroh's matrix formalism. The anisotropic creep rate of the eutectic Sn-Ag phase of Tier I is then modeled using above inputs and the evolving dislocation density calculated for the dominant glide systems. The evolving dislocation density history is estimated by modeling the equilibrium between three competing processes: (1) dislocation generation; (2) dislocation impediment (due to backstress from forest dislocations in the Sn dendrites and from the Ag3Sn IMC particles in the eutectic phase); and (3) dislocation recovery (by climb/diffusion from forest dislocations in the Sn dendrites and by climb/detachment from the Ag3Sn IMC particles in the eutectic phase). The creep response of the eutectic phase (from Tier 1) is combined with creep of ellipsoidal Sn lobes at Tier 2 using the anisotropic Mori-Tanaka homogenization theory, to obtain the creep response of SAC305 single crystal along global specimen directions and is calibrated to experimentally obtained creep response of a SAC305 single crystal specimen. The Eshelby strain concentration tensors required for this homogenization process are calculated numerically for ellipsoidal Sn inclusions embedded in anisotropic eutectic Sn-Ag matrix. The orientations of SAC single crystal specimens with respect to loading direction are identified using orientation image mapping (OIM) using Electron Backscatter Diffraction (EBSD) and then utilized in the model to estimate the resolved shear stress along the dominant slip directions. The proposed model is then used for investigating the variability of the transient and secondary creep response of Sn3.0Ag0.5Cu (SAC305) solder, which forms the first objective of the dissertation. The transient creep strain rate along the [001] direction of SAC305 single crystal #1 is predicted to be 1-2 orders of magnitude higher than that along the [100]/[010] direction. Parametric studies have also been conducted to predict the effect of changing orientation, aspect ratio and volume fraction of Sn inclusions on the anisotropic creep response of SAC single crystals. The predicted creep shear strain along the global specimen direction is found to vary by a factor of (1-3) orders of magnitude due to change in one of the Euler angles (j1) in SAC305 single crystal #1, which is in agreement with the variability observed in experiments. The second objective of this dissertation focuses on using this proposed modeling framework to characterize and model the creep constitutive response of new low-silver, lead-free interconnects made of Sn1.0Ag0.5Cu (SAC105) doped with trace elements, viz., Manganese (Mn) and Antimony (Sb). The proposed multiscale model is used to mechanistically model the improvement in experimentally observed steady state creep resistance of above SAC105X solders due to the microalloying with the trace elements. The third and final objective of this dissertation is to use the above multiscale microstructural model to mechanistically predict the effect of extended isothermal aging on experimentally observed steady state creep response of SAC305 solders. In summary, the proposed mechanistic predictive model is demonstrated to successfully capture the dominant load paths and deformation mechanisms at each length scale and is also shown to be responsive to the microstructural tailoring done by microalloying and the continuous microstructural evolution because of thermomechanical life-cycle aging mechanisms in solders

    Heterogeneous 2.5D integration on through silicon interposer

    Get PDF
    © 2015 AIP Publishing LLC. Driven by the need to reduce the power consumption of mobile devices, and servers/data centers, and yet continue to deliver improved performance and experience by the end consumer of digital data, the semiconductor industry is looking for new technologies for manufacturing integrated circuits (ICs). In this quest, power consumed in transferring data over copper interconnects is a sizeable portion that needs to be addressed now and continuing over the next few decades. 2.5D Through-Si-Interposer (TSI) is a strong candidate to deliver improved performance while consuming lower power than in previous generations of servers/data centers and mobile devices. These low-power/high-performance advantages are realized through achievement of high interconnect densities on the TSI (higher than ever seen on Printed Circuit Boards (PCBs) or organic substrates), and enabling heterogeneous integration on the TSI platform where individual ICs are assembled at close proximity

    Electrochemical Study of Ammonium Interaction with Au,Sn and Cu Electrodes in Nonaqueous Electrolytes

    Get PDF
    Nonaqueous electrolytes play an important role in electrochemical devices such as flip chip and lithium-air batteries. In this work, we examine ammonium-Cu, Sn and Li interactions in nonaqueous electrolytes to optimize the future flip chip flux and electrolyte additive of lithium-air battery. The activity of halogen-free carboxylic acid flux is considered one of the most important aspects in controlling flip chip joint quality recently. CuOx removal effectiveness of carboxylic acid solutions at Cu substrates using electrochemical methods at elevated temperatures from 100ºC to 180ºC is studied thoroughly by chronopotentiometry and gravimetric analysis. Carboxylic acid-based solutions with ethanolamine show oxide removal rates similar to hydrochloric acid solutions at temperatures above 140ºC. Sn (II) and Sn (IV) voltammetry shows Sn2+ and Sn4+ can form Sn-carboxylate complex and dissolve into the solution. XPS results indicate under high temperature (180 ºC) and relatively low pH (~2.50), carboxylic acid can clean the surface of Sn as well as halide acid. Equilibrium coefficients between the complexes are obtained and potential-pH diagrams for adipic acid and maleic acid in PEG are presented. Ammonium cations are known to interact with superoxides (O2-) or peroxides (O22-) and to affect the reversibility of lithium-air battery reactions. Here we study the reversibility of reduced oxygen in dimethyl sulfoxide using seven different ammonium cations. Results from cyclic voltammetry show superoxide selectivity and reversibility are generally improved with larger ammonium cations. XANES (X-ray adsorption near edge structure) analysis also shows the ammonium species influence selectivity in lithium-containing electrolytes including up to a ~10% increase in the formation of Li2O2. The nature of selectivity enhancement is believed to be associated with improving the stability of the O=O bond and possible mechanisms are proposed

    Kupari-tina mikroliitosten karakterisointimenetelmät

    Get PDF
    The microelectronics industry constantly aspires to shrink the device features. At the package level, this implies a decrease in the interconnect size leading to small volume interconnections that are commonly called micro-connects. Smaller material volumes may give rise to new reliability challenges, such as open circuits, due to Kirkendall voiding. The root cause(s) for Kirkendall voiding is not yet clear and the methods for characterization are still varied. This thesis reviews techniques to characterize the microstructure and impurities in Cu-Sn micro-connects. The evaluated techniques are Auger Electron Spectroscopy (AES), Electron Energy Loss Spectroscopy (EELS), Energy-Dispersive X-Ray Spectroscopy (EDX), X-Ray Spectroscopy (XPS), Secondary Ion Mass Spectrometry (SIMS), Rutherford Backscattering Spectrometry (RBS), Elastic Recoil Detection Analysis (EELS), Transmission Electron Microscopy (TEM), Focused Ion Beam (FIB), and Scanning Acoustic Microscopy (SAM). From the reviewed techniques, EDX, FIB, SAM, and TEM are used in the experimental section. For the first time, impurities are measured directly inside Kirkendall voids. It was discovered that the Kirkendall voids in annealed Cu-Sn samples contained a significant amount of chlorine and oxygen. The ASTM grain size counting method was applied to FIB-polished samples. It was observed that the grain size did not increase by annealing at 150 ◦C. Furthermore, for the first time, GHz-SAM was used to characterize Kirkendall voids. The technique is promising but it is still affected by the low lateral resolution.Mikroelektroniikkateollisuus pyrkii jatkuvasti pienentämään laitekokoa. Paketointitasolla tämä tarkoittaa sitä, että sirujen välisten liitosten kokoluokka on siirtymässä kohti mikroliitoksia, jotka saattavat aiheuttaa uusia luotettavuusongelmia. Kirkendall-aukot ovat yksi syy kyseisiin luotettavuusongelmiin ja aukkojen alkuperä on vielä tuntematon. Sen lisäksi, mikroliitosten ja Kirkendall aukkojen karakterisointiin käytetään toisistaan poikkeavia menetelmiä eikä sopivista metodeista ole vielä yhteisymmärrystä. Tämä diplomityö tarkastelee kupari-tina mikroliitoksien mikrorakenteen ja epäpuhtauksien analysointiin käytettyjä menetelmiä. Tarkasteltavat menetelmät ovat Auger elektronispektroskopia (AES), epäelastinen elektronisironta (EELS), energiadispersiivinen röntgenspektroskopia (EDX), röntgenfotoelektronispektroskopia (XPS), sekundääri ionimassaspektroskopia (SIMS), Rutherford-takaisinsirontaspektroskopia (RBS), rekyylispektrometria (ERDA), läpäisyelektronimikroskopia (TEM), keskitetty ionisuihku (FIB) ja akustinen mikroskopia (SAM). Esitellyistä menetelmistä kokeellisessa osiossa käytettiin EDX:ää, FIB:ä, SAM:a ja (S)TEM:ä. Tässä diplomityössä on mitattu ensimmäistä kertaa epäpuhtauksia Kirkendall-aukkojen sisältä. Mittauksista saatiin selville, että hehkutettujen kupari-tina -näytteiden Kirkendall-aukot sisälsivät huomattavan määrän happea ja klooria. Raekokoa tarkasteltiin kiillottamalla näytteet FIB:llä ja soveltamalla ASTM:n raekoko -standardia. Työssä huomattiin, että raekoko ei kasvanut, jos näytteitä hehkutettiin 150 ◦C lämpötilassa. Tämä on myös ensimmäinen kerta, kun GHzSAM:a on käytetty Kirkendall-aukkojen tutkimiseen. Tulokset olivat lupaavia, mutta menetelmän alhainen sivuttaissuuntainen resoluutio on vielä rajoittava tekijä

    Commercialization of low temperature copper thermocompression bonding for 3D integrated circuits

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2008.Includes bibliographical references (p. 84-87).Wafer bonding is a key process and enabling technology for realization of three-dimensional integrated circuits (3DIC) with reduced interconnect delay and correspondingly increased circuit speed and decreased power dissipation, along with an improved form factor and portability. One of the most recent novel and promising wafer bonding approaches to realizing 3DIC is Low Temperature Thermocompression (LTTC) bonding using copper (Cu) as the bonding interface material. This thesis investigates the LTTC bonding approach in terms of its technological implications in contrast to other conventional bonding approaches. The various technological aspects pertaining to LTTC are comprehensively explored and analyzed. In addition to this, the commercialization potential for this technology is also studied and the economic viability of this process in production is critically evaluated using suitable cost models. Based on the technological and economic outlook, the potential for commercialization of LTTC is gauged.by Raghavan Nagarajan.M.Eng

    Electric field-induced directed assembly of diblock copolymers and grain boundary grooving in metal interconnects

    Get PDF
    Das Anlegen eines elektrischen Feldes an Materialien hat eine faszinierende Wirkung. Unterschiedliche Werkstoffklassen sind einem externen elektrischen Feld entweder als ein Teil der Verarbeitung oder aufgrund der alleinigen Applikation ausgesetzt. Wenn das elektrische Feld für die Verarbeitung verwendet wird, kann dieses die Mikrostruktur in Metallen, Legierungen, Keramiken und Polymeren verändern, wodurch die physikalischen Eigenschaften verändert werden. Alternativ können mehrere Einsatzmöglichkeiten wie beispielsweise der Einsatz in elektronischen Geräten dazu führen, dass Materialien als Komponenten verwendet werden, die täglich intensiven Stromstärken ausgesetzt sind. Eine ständige Verlagerung der Atome kann zu Fehlern im offenen Stromkreis führen, wodurch die Zuverlässigkeit des gesamten Geräts beeinträchtigt wird. Mit Hilfe der Phasenfeldmethode wird in der vorliegenden Dissertation jeweils ein Anwendungsfall untersucht, in dem das elektrische Feld entweder positive oder negative Folgen haben kann. Im ersten Teil der Arbeit wird ein diffuses Grenzflächenmodell entwickelt und für die Untersuchung der gerichteten Selbstorganisation von symmetrischen Diblock-Copolymeren verwendet, die gleichzeitig durch das elektrische Feld, die Substrataffinität und die Beschränkung beeinflusst werden. Es werden verschiedene beschränkende Geometrien untersucht und eine Reihe an Phasendiagrammen für unterschiedliche Schichtdicken charakterisiert, die das Verhältnis zwischen dem elektrischen Feld und der Substratstärke zeigen. Zusätzlich zu der Ermittlung der vorhandenen parallelen, senkrechten und gemischten Lamellenphasen findet man, ähnlich wie bei den vorausgegangenen analytischen Berechnungen und experimentellen Beobachtungen, auch einen Bereich im Phasendiagramm, der einem Lamellenabstand der Größe eines halben Integrals entspricht, in dem hybride Morphologien wie Benetzungsschichten in der Nachbarschaft des Substrats koexistieren, die entweder Löcher in der Mitte der Schicht oder senkrechte zylinderförmige Bereiche aufweisen. Des Weiteren wird die Untersuchung auf drei Dimensionen erweitert, in denen die letztgenannte Morphologie als eine hexagonal perforierte (HPL) Lamellenphase charakterisiert wird. Erstmals wird gezeigt, dass durch ein elektrisches Feld ein Ordnungs-Ordnungs-übergang von einer Lamellenphase zu einer HPL-Phase hervorgerufen werden kann. Außerdem zeigt der kinetische Verlauf des Übergangs, dass es sich bei den perforierten Lamellen, die während des Übergangs von parallelen zu senkrechten Lamellen in Dünnschichten entstehen, um Zwischenstrukturen handelt. Im Folgenden werden verschiedene Beschädigungsarten erläutert, die aufgrund der Elektromigration (EM) in Nanoverbindungen durch die Rille der Korngrenze verursacht werden. Dazu wird ein einkomponentiges, polykristallines Phasenfeldmodell verwendet, das die Windstärke der Elektronen berücksichtigt. Das Modell und dessen numerische Umsetzung wird erst mit der scharfen Grenzflächentheorie von Mullins verglichen, bei der die thermische Rillenbildung durch Oberflächendiffusion vermittelt wird. Anschließend wird gezeigt, dass die Art der durch die fortschreitende Elektromigration verursachten Schädigung stark durch einen Fluss durch Grenzflächen beeinträchtigt werden kann, der aufgrund der Elektromigration stattfindet. Ein schneller atomarer Transport entlang der Oberfläche führt zu einer formerhaltenden Versetzung der Oberfläche, während der Schaden durch einen schnelleren atomaren Transport durch Grenzflächen in Form von interkristallinen Schlitzen mit einer formerhaltenden Spitze lokalisiert wird. Durch die Phasenfeldsimulationen wird die Funktion von krümmungs- und EM-induzierten heilenden Strömungen entlang der Oberfläche weiter hervorgehoben, die die Rille wieder auffüllen und die Schadensausbreitung verzögern. Erstmals wird ein numerisches Modell erweitert, um die räumlich-zeitliche Schadenseinleitung, die Ausbreitung, die Selbstheilung und die Kornvergröberung in dreidimensionalen Verbindungen zu untersuchen. Anschließend zeigt ein kritischer Vergleich der aus der scharfen Grenzflächenmethode und der Phasenfeldmethode gewonnenen Lösungen bezüglich der Rillenbildung, dass sowohl bei der Ermittlung der Rillenformen als auch beim Verlauf der Schadensart erhebliche Fehler entstehen können, wenn der durch die Elektromigration induzierte Oberflächenfluss in den Theorien der scharfen Grenzflächen nicht berücksichtigt wird. Zur Beseitigung der Diskrepanzen wird schließlich ein neues scharfes Grenzflächenmodell für finite Körner formuliert, das die zeitgleiche Kapillarwirkung und den durch die Elektromigration induzierten Oberflächen- und Grenzflächenfluss berücksichtigt. Die mit dem neuen Modell getroffenen Vorhersagen zeigen eine sehr gute Übereinstimmung mit dem Phasenfeldmodell. Durch die Ergebnisse der vorliegenden Arbeit wird die Durchführbarkeit und Anwendbarkeit der Phasenfeldmethode in Bezug auf die Erfassung der erforderlichen Physik des Problems und in Bezug auf die Bewältigung der mikrostrukturellen Entwicklung effizient und elegant in einem Phänomen verdeutlicht, das durch ein elektrisches Feld verursacht wird
    corecore