169 research outputs found

    A Fast-rate WLAN Measurement Tool for Improved Miss-rate in Indoor Navigation

    Full text link
    Recently, location-based services (LBS) have steered attention to indoor positioning systems (IPS). WLAN-based IPSs relying on received signal strength (RSS) measurements such as fingerprinting are gaining popularity due to proven high accuracy of their results. Typically, sets of RSS measurements at selected locations from several WLAN access points (APs) are used to calibrate the system. Retrieval of such measurements from WLAN cards are commonly at one-Hz rate. Such measurement collection is needed for offline radio-map surveying stage which aligns fingerprints to locations, and for online navigation stage, when collected measurements are associated with the radio-map for user navigation. As WLAN network is not originally designed for positioning, an RSS measurement miss could have a high impact on the fingerprinting system. Additionally, measurement fluctuations require laborious signal processing, and surveying process can be very time consuming. This paper proposes a fast-rate measurement collection method that addresses previously mentioned problems by achieving a higher probability of RSS measurement collection during a given one-second window. This translates to more data for statistical processing and faster surveying. The fast-rate collection approach is analyzed against the conventional measurement rate in a proposed testing methodology that mimics real-life scenarios related to IPS surveying and online navigation

    Algorithms and Methods for Received Signal Strength Based Wireless Localization

    Get PDF
    In the era of wireless communications, the demand for localization and localization-based services has been continuously growing, as increasingly smarter wireless devices have emerged to the market. Besides the already available satellite-based localization systems, such as the GPS and GLONASS, also other localization approaches are needed to complement the existing solutions. Finding different types of low-cost localization methods, especially for indoors, has become one of the most important research topics in recent years.One of the most used approaches in localization is based on Received Signal Strength (RSS) information. Specific fingerprints about RSS are collected and stored and positioning can be done through pattern or feature matching algorithms or through statistical inference. A great and immediate advantage of the RSS-based localization is its ability to exploit the already existing infrastructure of different communications networks without the need to install additional system hardware. Furthermore, due to the evident connection between the RSS level and the quality of a communications signal, the RSS is usually inherently included in the network measurements. This favors the availability of the RSS measurements in the current and future wireless communications systems.In this thesis, we study the suitability of RSS for localization in various communications systems including cellular networks, wireless local area networks, personal area networks, such as WiFi, Bluetooth and Radio Frequency Identification (RFID) tags. Based on substantial real-life measurement campaigns, we study different characteristics of RSS measurements and propose several Path Loss (PL) models to capture the essential behavior of the RSS levels in 2D outdoor and 3D indoor environments. By using the PL models, we show that it is possible to attain similar performance to fingerprinting with a database size of only 1-2% of the database size needed in fingerprinting. In addition, we study the effect of different error sources, such as database calibration errors, on the localization accuracy. Moreover, we propose a novel method for studying how coverage gaps in the fingerprint database affect the localization performance. Here, by using various interpolation and extrapolation methods, we improve the localization accuracy with imperfect fingerprint databases, such as those including substantial cover-age gaps due to inaccessible parts of the buildings

    Indoor positioning technology assessment using analytic hierarchy process for pedestrian navigation services

    Get PDF
    Indoor positioning is one of the biggest challenges of many Location Based Services (LBS), especially if the target users are pedestrians, who spend most of their time in roofed areas such as houses, offices, airports, shopping centres and in general indoors. Providing pedestrians with accurate, reliable, cheap, low power consuming and continuously available positional data inside the buildings (i.e. indoors) where GNSS signals are not usually available is difficult. Several positioning technologies can be applied as stand-alone indoor positioning technologies. They include Wireless Local Area Networks (WLAN), Bluetooth Low Energy (BLE), Ultra-Wideband (UWB), Radio Frequency Identification (RFID), Tactile Floor (TF), Ultra Sound (US) and High Sensitivity GNSS (HSGNSS). This paper evaluates the practicality and fitness-to-the-purpose of pedestrian navigation for these stand-alone positioning technologies to identify the best one for the purpose of indoor pedestrian navigation. In this regard, the most important criteria defining a suitable positioning service for pedestrian navigation are identified and prioritised. They include accuracy, availability, cost, power consumption and privacy. Each technology is evaluated according to each criterion using Analytic Hierarchy Process (AHP) and finally the combination of all weighted criteria and technologies are processed to identify the most suitable solution

    The smartphone-based offline indoor location competition at IPIN 2016: analysis and future work

    Get PDF
    This paper presents the analysis and discussion of the off-site localization competition track, which took place during the Seventh International Conference on Indoor Positioning and Indoor Navigation (IPIN 2016). Five international teams proposed different strategies for smartphone-based indoor positioning using the same reference data. The competitors were provided with several smartphone-collected signal datasets, some of which were used for training (known trajectories), and others for evaluating (unknown trajectories). The competition permits a coherent evaluation method of the competitors' estimations, where inside information to fine-tune their systems is not offered, and thus provides, in our opinion, a good starting point to introduce a fair comparison between the smartphone-based systems found in the literature. The methodology, experience, feedback from competitors and future working lines are described.We would like to thank Tecnalia Research & Innovation Foundation for sponsoring the competition track with an award for the winning team. We are also grateful to Francesco Potortì, Sangjoon Park, Jesús Ureña and Kyle O’Keefe for their invaluable help in promoting the IPIN competition and conference. Parts of this work was carried out with the financial support received from projects and grants: LORIS (TIN2012-38080-C04-04), TARSIUS (TIN2015-71564-C4-2-R (MINECO/FEDER)), SmartLoc (CSIC-PIE Ref.201450E011), “Metodologías avanzadas para el diseño, desarrollo, evaluación e integración de algoritmos de localización en interiores” (TIN2015-70202-P), REPNIN network (TEC2015-71426-REDT) and the José Castillejo mobility grant (CAS16/00072). The HFTS team has been supported in the frame of the German Federal Ministry of Education and Research programme “FHprofUnt2013” under contract 03FH035PB3 (Project SPIRIT). The UMinho team has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT — Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013.info:eu-repo/semantics/publishedVersio

    Wi-Fi Finger-Printing Based Indoor Localization Using Nano-Scale Unmanned Aerial Vehicles

    Get PDF
    Explosive growth in the number of mobile devices like smartphones, tablets, and smartwatches has escalated the demand for localization-based services, spurring development of numerous indoor localization techniques. Especially, widespread deployment of wireless LANs prompted ever increasing interests in WiFi-based indoor localization mechanisms. However, a critical shortcoming of such localization schemes is the intensive time and labor requirements for collecting and building the WiFi fingerprinting database, especially when the system needs to cover a large space. In this thesis, we propose to automate the WiFi fingerprint survey process using a group of nano-scale unmanned aerial vehicles (NAVs). The proposed system significantly reduces the efforts for collecting WiFi fingerprints. Furthermore, since these NAVs explore a 3D space, the WiFi fingerprints of a 3D space can be obtained increasing the localization accuracy. The proposed system is implemented on a commercially available miniature open-source quadcopter platform by integrating a contemporary WiFi - fingerprint - based localization system. Experimental results demonstrate that the localization error is about 2m, which exhibits only about 20cm of accuracy degradation compared with the manual WiFi fingerprint survey methods

    Location tracking in indoor and outdoor environments based on the viterbi principle

    Get PDF

    Enhancing Indoor Localisation: a Bluetooth Low Energy (BLE) Beacon Placement approach

    Get PDF
    Indoor location-based services have become increasingly vital in various sectors, including industries, healthcare, airports, and crowded infrastructures, facilitating asset tracking and user navigation. This project addresses the critical challenge of optimising beacon placement for indoor location, employing Bluetooth technology as the communication protocol. The significance of this research lies in the effi ciency and accuracy that an optimised beacon layout can provide, enhancing the effectiveness of indoor positioning systems. The algorithm developed takes into con sideration materials attenuation, coverage and Line of Sight (LOS) conditions to optimise its layouts. Experimental validation of the algorithm’s performance was conducted by comparing two beacon layouts: one optimised by the algorithm and the other manually arranged by individuals with empirical knowledge in the field. The experiment considered three distinct positions within the schematic, allowing for a comprehensive assessment of the optimised layout’s superior performance. The results of this research offer insights into the potential of the algorithm to revolu tionise indoor location services, providing a more reliable and cost-effective solution for a multitude of applications.Os serviços de localização em ambientes internos tornaram-se cada vez mais essenciais em vários setores, incluindo indústrias, cuidados de saúde, aeroportos e infraestruturas movimentadas, facilitando o rastreamento de objetos e a navegação de utilizadores. Este projeto aborda o desafio crítico da otimização da colocação de beacons para localização em ambientes internos, utilizando a tecnologia Bluetooth como protocolo de comunicação. A importância desta pesquisa reside na eficiência e precisão que uma disposição otimizada de beacons pode proporcionar, melhorando a eficácia de sistemas de posicionamento em ambientes internos. O algoritmo desenvolvido leva em consideração a atenuação de materiais, a cobertura e as condições de visão direta para otimizar as suas disposições. A validação experimental do desempenho do algoritmo foi realizada ao comparar duas disposições de beacons: uma otimizada pelo algoritmo e outra organizada manualmente por indivíduos com conhecimento empírico na área. A experiência considerou três posições distintas no esquema, permitindo uma avaliação abrangente do desempenho superior da disposição otimizada. Os resultados desta pesquisa oferecem descobertas importantes sobre o potencial do algoritmo para revolucionar os serviços de localização em ambientes internos, proporcionando uma solução mais confiável e econômica para uma variedade de aplicações

    Off-line evaluation of mobile-centric indoor positioning systems: the experiences from the 2017 IPIN competition

    Get PDF
    The development of indoor positioning solutions using smartphones is a growing activity with an enormous potential for everyday life and professional applications. The research activities on this topic concentrate on the development of new positioning solutions that are tested in specific environments under their own evaluation metrics. To explore the real positioning quality of smartphone-based solutions and their capabilities for seamlessly adapting to different scenarios, it is needed to find fair evaluation frameworks. The design of competitions using extensive pre-recorded datasets is a valid way to generate open data for comparing the different solutions created by research teams. In this paper, we discuss the details of the 2017 IPIN indoor localization competition, the different datasets created, the teams participating in the event, and the results they obtained. We compare these results with other competition-based approaches (Microsoft and Perf-loc) and on-line evaluation web sites. The lessons learned by organising these competitions and the benefits for the community are addressed along the paper. Our analysis paves the way for future developments on the standardization of evaluations and for creating a widely-adopted benchmark strategy for researchers and companies in the field.We would like to thank Topcon Corporation for sponsoring the competition track with an award for the winning team. We are also grateful to Francesco Potorti, Sangjoon Park, Hideo Makino, Nobuo Kawaguchi, Takeshi Kurata and Jesus Urena for their invaluable help in organizing and promoting the IPIN competition and conference. Many thanks to Raul Montoliu, Emilio Sansano, Marina Granel and Luis Alisandra for collecting the databases in the UJITI building. Parts of this work were carried out with the financial support received from projects and grants: REPNIN network (TEC2015-71426-REDT), LORIS (TIN2012-38080-C04-04), TARSIUS (TIN2015-71564-C4-2-R (MINECO/FEDER)), SmartLoc (CSIC-PIE Ref. 201450E011), "Metodologias avanzadas para el diseno, desarrollo, evaluacion e integracion de algoritmos de localizacion en interiores" (TIN2015-70202-P), GEO-C (Project ID: 642332, H2020-MSCA-ITN-2014-Marie Sklodowska-Curie Action: Innovative Training Networks), and financial support from the Ministry of Science and Technology, Taiwan (106-3114-E-007-005 and 105-2221-E-155-013-MY3). The HFTS team has been supported in the frame of the German Federal Ministry of Education and Research programme "FHprofUnt2013" under contract 03FH035PB3 (Project SPIRIT). The UMinho team has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT-Fundacao para a Ciencia e Tecnologia within the Project Scope: UID/CEC/00319/2013. G.M. Mendoza-Silva gratefully acknowledges funding from grant PREDOC/2016/55 by Universitat Jaume I.info:eu-repo/semantics/publishedVersio
    corecore