296 research outputs found

    Promotion of cooperation induced by the interplay between structure and game dynamics

    Get PDF
    We consider the coupled dynamics of the adaption of network structure and the evolution of strategies played by individuals occupying the network vertices. We propose a computational model in which each agent plays a nn-round Prisoner's Dilemma game with its immediate neighbors, after that, based upon self-interest, partial individuals may punish their defective neighbors by dismissing the social tie to the one who defects the most times, meanwhile seek for a new partner at random from the neighbors of the punished agent. It is found that the promotion of cooperation is attributed to the entangled evolution of individual strategy and network structure. Moreover, we show that the emerging social networks exhibit high heterogeneity and disassortative mixing pattern. For a given average connectivity of the population and the number of rounds, there is a critical value for the fraction of individuals adapting their social interactions, above which cooperators wipe out defectors. Besides, the effects of the average degree, the number of rounds, and the intensity of selection are investigated by extensive numerical simulations. Our results to some extent reflect the underlying mechanism promoting cooperation.Comment: 13 pages, 6 figure

    Social dilemmas in an online social network: the structure and evolution of cooperation

    Full text link
    We investigate two paradigms for studying the evolution of cooperation--Prisoner's Dilemma and Snowdrift game in an online friendship network obtained from a social networking site. We demonstrate that such social network has small-world property and degree distribution has a power-law tail. Besides, it has hierarchical organizations and exhibits disassortative mixing pattern. We study the evolutionary version of the two types of games on it. It is found that enhancement and sustainment of cooperative behaviors are attributable to the underlying network topological organization. It is also shown that cooperators can survive when confronted with the invasion of defectors throughout the entire ranges of parameters of both games. The evolution of cooperation on empirical networks is influenced by various network effects in a combined manner, compared with that on model networks. Our results can help understand the cooperative behaviors in human groups and society.Comment: 14 pages, 7 figure

    Coevolutionary games - a mini review

    Full text link
    Prevalence of cooperation within groups of selfish individuals is puzzling in that it contradicts with the basic premise of natural selection. Favoring players with higher fitness, the latter is key for understanding the challenges faced by cooperators when competing with defectors. Evolutionary game theory provides a competent theoretical framework for addressing the subtleties of cooperation in such situations, which are known as social dilemmas. Recent advances point towards the fact that the evolution of strategies alone may be insufficient to fully exploit the benefits offered by cooperative behavior. Indeed, while spatial structure and heterogeneity, for example, have been recognized as potent promoters of cooperation, coevolutionary rules can extend the potentials of such entities further, and even more importantly, lead to the understanding of their emergence. The introduction of coevolutionary rules to evolutionary games implies, that besides the evolution of strategies, another property may simultaneously be subject to evolution as well. Coevolutionary rules may affect the interaction network, the reproduction capability of players, their reputation, mobility or age. Here we review recent works on evolutionary games incorporating coevolutionary rules, as well as give a didactic description of potential pitfalls and misconceptions associated with the subject. In addition, we briefly outline directions for future research that we feel are promising, thereby particularly focusing on dynamical effects of coevolutionary rules on the evolution of cooperation, which are still widely open to research and thus hold promise of exciting new discoveries.Comment: 24 two-column pages, 10 figures; accepted for publication in BioSystem

    Quantifying the Role of Homophily in Human Cooperation Using Multiplex Evolutionary Game Theory.

    Get PDF
    Nature shows as human beings live and grow inside social structures. This assumption allows us to explain and explore how it may shape most of our behaviours and choices, and why we are not just blindly driven by instincts: our decisions are based on more complex cognitive reasons, based on our connectedness on different spaces. Thus, human cooperation emerges from this complex nature of social network. Our paper, focusing on the evolutionary dynamics, is intended to explore how and why it happens, and what kind of impact is caused by homophily among people. We investigate the evolution of human cooperation using evolutionary game theory on multiplex. Multiplexity, as an extra dimension of analysis, allows us to unveil the hidden dynamics and observe non-trivial patterns within a population across network layers. More importantly, we find a striking role of homophily, as the higher the homophily between individuals, the quicker is the convergence towards cooperation in the social dilemma. The simulation results, conducted both macroscopically and microscopically across the network layers in the multiplex, show quantitatively the role of homophily in human cooperation

    Exploring cooperative game mechanisms of scientific coauthorship networks

    Full text link
    Scientific coauthorship, generated by collaborations and competitions among researchers, reflects effective organizations of human resources. Researchers, their expected benefits through collaborations, and their cooperative costs constitute the elements of a game. Hence we propose a cooperative game model to explore the evolution mechanisms of scientific coauthorship networks. The model generates geometric hypergraphs, where the costs are modelled by space distances, and the benefits are expressed by node reputations, i. e. geometric zones that depend on node position in space and time. Modelled cooperative strategies conditioned on positive benefit-minus-cost reflect the spatial reciprocity principle in collaborations, and generate high clustering and degree assortativity, two typical features of coauthorship networks. Modelled reputations generate the generalized Poisson parts and fat tails appeared in specific distributions of empirical data, e. g. paper team size distribution. The combined effect of modelled costs and reputations reproduces the transitions emerged in degree distribution, in the correlation between degree and local clustering coefficient, etc. The model provides an example of how individual strategies induce network complexity, as well as an application of game theory to social affiliation networks

    Assortativity in cognition

    Get PDF
    corecore