1,245 research outputs found

    Robotic manipulators for single access surgery

    Get PDF
    This thesis explores the development of cooperative robotic manipulators for enhancing surgical precision and patient outcomes in single-access surgery and, specifically, Transanal Endoscopic Microsurgery (TEM). During these procedures, surgeons manipulate a heavy set of instruments via a mechanical clamp inserted in the patient’s body through a surgical port, resulting in imprecise movements, increased patient risks, and increased operating time. Therefore, an articulated robotic manipulator with passive joints is initially introduced, featuring built-in position and force sensors in each joint and electronic joint brakes for instant lock/release capability. The articulated manipulator concept is further improved with motorised joints, evolving into an active tool holder. The joints allow the incorporation of advanced robotic capabilities such as ultra-lightweight gravity compensation and hands-on kinematic reconfiguration, which can optimise the placement of the tool holder in the operating theatre. Due to the enhanced sensing capabilities, the application of the active robotic manipulator was further explored in conjunction with advanced image guidance approaches such as endomicroscopy. Recent advances in probe-based optical imaging such as confocal endomicroscopy is making inroads in clinical uses. However, the challenging manipulation of imaging probes hinders their practical adoption. Therefore, a combination of the fully cooperative robotic manipulator with a high-speed scanning endomicroscopy instrument is presented, simplifying the incorporation of optical biopsy techniques in routine surgical workflows. Finally, another embodiment of a cooperative robotic manipulator is presented as an input interface to control a highly-articulated robotic instrument for TEM. This master-slave interface alleviates the drawbacks of traditional master-slave devices, e.g., using clutching mechanics to compensate for the mismatch between slave and master workspaces, and the lack of intuitive manipulation feedback, e.g. joint limits, to the user. To address those drawbacks a joint-space robotic manipulator is proposed emulating the kinematic structure of the flexible robotic instrument under control.Open Acces

    Effects on mobility training and de-adaptations in subjects with Spinal Cord Injury due to a Wearable Robot: A preliminary report

    Get PDF
    open7noopenSale, Patrizio; Russo, Emanuele Francesco; Russo, Michele; Masiero, Stefano; Piccione, Francesco; Calabrò, Rocco Salvatore; Filoni, SerenaSale, Patrizio; Russo, Emanuele Francesco; Russo, Michele; Masiero, Stefano; Piccione, Francesco; Calabrò, Rocco Salvatore; Filoni, Seren

    Automating endoscopic camera motion for teleoperated minimally invasive surgery using inverse reinforcement learning

    Get PDF
    During a laparoscopic surgery, an endoscopic camera is used to provide visual feedback of the surgery to the surgeon and is controlled by a skilled assisting surgeon or a nurse. However, in robot-assisted teleoperated systems such as the daVinci surgical system, the same control lies with the operating surgeons. This results in an added task of constantly changing view point of the endoscope which can be disruptive and also increase the cognitive load on the surgeons. The work presented in this thesis aims to provide an approach that results in an intelligent camera control for such systems using machine learning algorithms. A particular task of pick and place was selected to demonstrate this approach. To add a layer of intelligence to the endoscope, the task was classified into subtasks representing the intent of the user. Neural networks with long short term memory cells (LSTMs) were trained to classify the motion of the instruments in the subtasks and a policy was calculated for each subtask using inverse reinforcement learning (IRL). Since current surgical robots do not enable the movement of the camera and instruments simultaneously, an expert data set was unavailable that could be used to train the models. Hence, a user study was conducted in which the participants were asked to complete the task of picking and placing a ring on a peg in a 3-D immersive simulation environment created using CHAI libraries. A virtual reality headset, Oculus Rift, was used during the study to track the head movements of the users to obtain their view points while they performed the task. This was considered to be expert data and was used to train the algorithm to automate the endoscope motion. A 71.3% accuracy was obtained for the classification of the task into 4 subtasks and the inverse reinforcement learning resulted in an automated trajectory of the endoscope which was 94.7% similar to the human trajectories collected demonstrating that the approach provided in thesis can be used to automate endoscopic motion similar to a skilled assisting surgeon
    • …
    corecore