611 research outputs found

    A fundamental mechanism for carbon-film lubricity identified by means of ab initio molecular dynamics

    Full text link
    Different hypotheses have been proposed to explain the mechanism for the extremely low friction coefficient of carbon coatings and its undesired dependence on air humidity. A decisive atomistic insight is still lacking because of the difficulties in monitoring what actually happens at the buried sliding interface. Here we perform large-scale ab initio molecular dynamics simulations of both undoped and silicon-doped carbon films sliding in the presence of water. We observe the tribologically-induced surface hydroxylation and subsequent formation of a thin film of water molecules bound to the OH-terminated surface by hydrogen bonds. The comparative analysis of silicon-incorporating and clean surfaces, suggests that this two-step process can be the key phenomenon to provide high slipperiness to the carbon coatings. The water layer is, in fact, expected to shelter the carbon surface from direct solid-on-solid contact and make any counter surface slide extremely easily on it. The present insight into the wettability of carbon-based films can be useful for designing new coatings for biomedical and energy-saving applications with environmental adaptability.Comment: 22 pages, 4 figures, 1 tabl

    Preparation of Nickel-Based Nanolubricants and Investigation of their Tribological Behavior

    Get PDF
    In situ surface-modification technique is adopted in present research to fabricate a series of Ni nanoparticles as well as Cu@Ni nanoparticles with different size and morphology. The correlation among the composition, structure, size, and morphology and tribological properties of as-synthesized additives were explored, and the friction-reducing, antiwear, and worn surface self-healing mechanisms of the additives were discussed. It was found that Ni nanoparticles with a smaller size show higher surface activity and can readily deposit on the sliding surface and form a stable and continuous protective layer thereon. Compared with sphere-like and triangular rod-like Ni nanoparticles, triangular plate-like Ni nanoparticles are more liable to form protective layer. Compared to Ni-based nanolubricants, as-synthesized Cu@Ni nanolubricants exhibit better friction-reducing, antiwear, and extreme pressure properties. It is because the highly active Ni nanocores and O- and N-containing organic modifying agents can readily form boundary lubricating film on sliding steel surfaces, while Cu nanocores can easily deposit on sliding steel surface to form a protective layer (self-healing film) thereon. Ni nanoparticles as nanoadditives in solid-liquid lubricating system significantly reduce the friction in all lubrication regimes: As a nanolubricant, Ni nanoparticles exhibit popular and effective friction-reducing, antiwear, and extreme pressure properties

    Friction Reduction in Powertrain Materials: Role of Tribolayers

    Get PDF
    This study aims at understanding the micromechanisms responsible for reduction in friction and wear in the engine cylinder bore/liner materials when tested under lubricated and unlubricated conditions. The tribolayers formed in-situ during sliding contact are unique to each tribosystem and a detailed study of these tribolayers will shed light on the friction reduction mechanisms in powertrain materials. Boundary lubricated tribological performance of grey cast iron (CI) tested against non-hydrogenated diamond-like carbon coating (NH-DLC) resulted in 21% lower coefficient of friction (COF) and an order of magnitude lower volumetric wear compared to CI and steel counterfaces. Dilution of the engine oil by ethanol containing E85 biofuel, consisting of 85% ethanol and 15% gasoline, was beneficial as COF and volumetric wear losses were further reduced. TEM/EELS studies of the NH-DLC counterface provided evidence for OH adsorption of the dangling carbon bonds at the coating surface leading to low friction. Advantage of E85/engine oil blend was also evident during boundary lubricated sliding of eutectic Al-12.6% Si alloy against AISI 52100 steel. The oil residue layer (ORL) formed during boundary lubricated sliding incorporated nanocrystalline regions of Al, Si, ZnS, AlPO4 and ZnO surrounded by amorphous carbon regions. Higher proportions of Zn, S, and P antiwear compounds formed in the ORL when tested using the E85/oil (1:1) blend compared to the unmixed engine oil as the hydroxyl groups in ethanol molecules facilitated ZDDP degradation. Mico-Raman spectroscopy indicated two types of tribolayers formed during unlubricated sliding of thermally sprayed low carbon steel 1010 coating deposited on linerless Al 380 cylinder bore: i) Fe2O3 layer transformed from FeO during dry sliding and ii) Fe2O3 layer with a top amorphous carbon transfer layer when run against H-DLC coated TCR with COF of 0.18. The NH- and H-DLC coatings, that provide low friction under room temperature conditions, fail at temperatures \u3e 200 °C. It was shown that W containing DLC (W-DLC) coatings offered low and stable COF of 0.07 at 400 °C while a Ti incorporated multilayer MoS2 (Ti-MoS2) coating maintained COF between 0.11 at 25 °C to 0.13 at 350 °C. The low friction provided by these coatings was attributed to formation of high temperature lubricious oxides: tungsten trioxide (WO3) in case of W-DLC and MoO3 in case of MoS2, as revealed by Raman analyses of the tribolayers formed on counterface surfaces. Tribolayer formation during sliding friction of multuilayered graphene (MLG), a potential lubricant, depended on the material transfer and relative humidity (RH). Sliding friction tests performed on MLG in air (10- 45% RH) and under a dry N2 atmosphere showed that progressively lower friction values were observed when the RH was increased, with maximum COF of 0.52 in dry N2 and lowest COF of about 0.10 at 45% RH. Microstructural studies including cross-sectional FIB/HR-TEM determined that sliding induced defects which comprised of edge fracture, fragmented/bent graphene stacks compared to pristine graphene and disordered regions between them. In summary, this work shows that delineating the micromechanisms responsible for reduction in friction and wear is critical for development of appropriate materials and coatings for powertrain components

    Tribological Comparison of Traditional and Advanced Firearm Coatings

    Get PDF
    The objective of this project is to find which type of coating has the best performance characteristics for finishing firearms. This is accomplished by measuring and comparing several performance characteristics, such as: adhesion, hardness, wear resistance, friction control, and corrosion resistance. Appearance is not a factor since any exterior coating that is flashy can be subdued or camouflaged with special purpose paints, which have proven durable enough for such purposes. Cost will not be a limiting factor for this experiment, but will be discussed in the conclusion as a secondary concern. This data will be used to identify the best coating for steel and aluminum firearm parts. The goal is to lengthen a firearm’s life cycle while increasing performance and reliability by applying the best coating

    Tribiology of Engineered Surfaces in Aggressive Environments

    Get PDF
    To improve the performance of sliding systems, surface modifications and coatings are often applied to opposing surfaces. This thesis focuses on characterizing two tribo-systems (DLC-DLC and steel micropatterns-flat) under their predicted application environments. The first section is focused on friction testing of micropatterned surfaces for orthopaedic device design, the second section elucidates how the sliding of diamond-like-carbon (DLC) coatings changes with temperature and humidity. The experimental design and major results of these sections are as follows. (1) The use of micropatterning to create uniform surface morphologies has been cited as yielding improvements in the coefficient of friction during high velocity sliding contact. Studies have not been preformed to determine if these micropatterns could also be useful in biomedical applications, such as total joint replacement surfaces, where the lower sliding velocities are used. In this study, the effect of pattern geometry, feature size and lubricant on contact friction and surface damage was investigated using 316L steel in sliding contact with a stainless steel and polyethylene pins. Using a novel proprietary forming process that creates millions of microstructures in parallel, a variety of micropatterned surfaces were fabricated to study the influence of shape (oval, circular, square), geometry (depressions, pillars) and feature size (10, 50 and 100 mm) on both contact friction and surface damage. The coefficients of friction were measured for each surface/lubricant/pin system using a CETR scratch testing system. Results showed that round depressions with diameters of 10 μm had a significantly lower steady state coefficient of friction than the non-patterned substrates or substrates with greater diameter depression patterns. (2) The use of diamond-like carbon (DLC) has been cited as a friction and wear reducing coating during sliding contact and is widely used in the hard disk drive (HDD) industry. Studies have not shown the simultaneous effects of the temperature and humidity or temperature and load on DLC coatings. This project will show the effects on the friction and wear of non- hydrogenated DLC coatings in high temperature environments (23 to 250 °C), various humid environments (10 – 95 %RH), dependence on load (2.66 to 10 N), and the combined effects each environmental condition. The DLC coatings being used in this study are ta-C (tetrahedral amorphous-carbon) and a-C (amorphous-carbon), which were deposited onto a substrate of Al2O3-TiC (Seagate) and 440C stainless steel counterface pin. The friction for this tribosystem was monitored by a built in-house POD system, which can control the humidity levels and can reach temperatures up to 300°C. It has been shown that the a-C is less sensitive to the humidity levels, but is more sensitive to the surrounding temperature than ta-C DLC coatings

    Tribological Behaviour of Solid Lubricants in Hydrogen Environment

    Get PDF

    Development Of Titanium Nitride/molybdenum Disulphide Composite Tribological Coatings For Cryocoolers

    Get PDF
    Hydrogen is a clean and sustainable form of carrier of energy that can be used in mobile and stationary applications. At present hydrogen is produced mostly from fossil sources. Solar photoelectrochemical processes are being developed for hydrogen production. Storing hydrogen can be done in three main ways: in compressed form, liquid form and by chemical bonding. Near term spaceport operations are one of the prominent applications for usage of large quantities of liquid hydrogen as a cryogenic propellant. Efficient storage and transfer of liquid hydrogen is essential for reducing the launch costs. A Two Stage Reverse Turbo Brayton Cycle (RTBC) CryoCooler is being developed at University of Central Florida. The cryocooler will be used for storage and transport of hydrogen in spaceport and space vehicle application. One part in development of the cryocooler is to reduce the friction and wear between mating parts thus increasing its efficiency. Tribological coatings having extremely high hardness, ultra-low coefficient of friction, and high durability at temperatures lower than 60 K are being developed to reduce friction and wear between the mating parts of the cryocooler thus improving its efficiency. Nitrides of high-melting-point metals (e.g. TiN, ZrN) and diamond-like-carbon (DLC) are potential candidates for cryogenic applications as these coatings have shown good friction behavior and wear resistance at cryogenic temperatures. These coatings are known to have coefficient of friction less than 0.1 at room temperature. However, cryogenic environment leads to increase in the coefficient of friction. It is expected that a composite consisting of a base layer of a hard coating covered with layer having an ultra-low coefficient of friction would provide better performance. Extremely hard and extremely low friction coatings of titanium nitride, molybdenum disulphide, TiN/MoS2 bilayer coatings, DLC and DLC/MoS2 bilayer coatings have been chosen for this application. TiN film was deposited by reactive DC magnetron sputtering system from a titanium target and MoS2 film was deposited by RF magnetron sputtering using a MoS2 target. Microwave assisted chemical vapor deposition (MWCVD) technique was used for preparation of DLC coatings. These composite coatings contain a solid lubricating phase and a hard ceramic matrix phase as distinctly segregated phases. These are envisioned as having the desired combination of lubricity and structural integrity. Extremely hard coatings of TiN and DLC were chosen to provide good wear resistance and MoS2 was chosen as the lubricating phase as it provides excellent solid lubricating properties due to its lamellar crystal structure. This thesis presents preparation; characterization (SEM and XRD), microhardness and tribological measurements carried out on TiN and TiN/MoS2 coatings on aluminum and glass substrate at room temperature. It also presents initial development in preparation of DLC coatings
    • …
    corecore