31 research outputs found

    Advanced Visualization and Interaction Systems for Surgical Pre-operative Planning

    Get PDF
    The visualization of 3D models of the patient’s body emerges as a priority in surgery. In this paper two different visualization and interaction systems are presented: a virtual interface and a low cost multi-touch screen. The systems are able to interpret in real-time the user’s movements and can be used in the surgical pre-operative planning for the navigation and manipulation of 3D models of the human body built from CT images. The surgeon can visualize both the standard patient information, such as the CT image dataset, and the 3D model of the patient’s organs built from these images. The developed virtual interface is the first prototype of a system designed to avoid any contact with the computer so that the surgeon is able to visualize models of the patient’s organs and to interact with these, moving the finger in the free space. The multi-touch screen provides a custom user interface developed for doctors’ needs that allows users to interact, for surgical pre-operative planning purposes, both with the 3D model of the patient’s body built from medical images, and with the image dataset

    A situation-aware cross-platform architecture for ubiquitous game

    Get PDF
    Multi-player online games (MOGs) are popular in these days. However, contemporary MOGs do not really support ubiquity in the sense that a seamless service across heterogeneous hardware platforms is not provided. This paper presents the architecture of the cross-platform online game, which provides a service to users from heterogeneous platforms and is equipped with a situation-aware capability for enabling the users to seamlessly move between heterogeneous platforms. The experimental results through the prototype implementations show the feasibility of the situation-aware cross-platform game

    Survey: Development and analysis of a games-based crisis scenario generation system

    Get PDF
    Crisis is an infrequent and unpredictable event which is challenging to prepare and resolve. Serious-game approach proved to provide potential support in training and simulating event of real-world crisis situation to different stakeholders. Yet in practice, the approach meets with difficulty on how to setup and utilize different core components such as asset management, crisis scenario generation, agent simulation, real-world constraints, and the evaluation process to yield beneficial information upon running the system. To address this issue, the key question is what can be done to propose a general crisis game-based framework providing necessary core components while generating evaluation result yielding potential analytical data for a crisis management process. Therefore, in this paper, we aim to review and consolidate the existing research on scenario generation techniques and related crisis simulation framework, then to propose novel solution to combine both processes and to derive a desirable scenario content which is also being validated in the simulation framework based on the JADE multi-agent architecture. © Springer International Publishing Switzerland 2016

    Service-oriented models for audiovisual content storage

    No full text
    What are the important topics to understand if involved with storage services to hold digital audiovisual content? This report takes a look at how content is created and moves into and out of storage; the storage service value networks and architectures found now and expected in the future; what sort of data transfer is expected to and from an audiovisual archive; what transfer protocols to use; and a summary of security and interface issues

    New Statistical Algorithms for the Analysis of Mass Spectrometry Time-Of-Flight Mass Data with Applications in Clinical Diagnostics

    Get PDF
    Mass spectrometry (MS) based techniques have emerged as a standard forlarge-scale protein analysis. The ongoing progress in terms of more sensitive machines and improved data analysis algorithms led to a constant expansion of its fields of applications. Recently, MS was introduced into clinical proteomics with the prospect of early disease detection using proteomic pattern matching. Analyzing biological samples (e.g. blood) by mass spectrometry generates mass spectra that represent the components (molecules) contained in a sample as masses and their respective relative concentrations. In this work, we are interested in those components that are constant within a group of individuals but differ much between individuals of two distinct groups. These distinguishing components that dependent on a particular medical condition are generally called biomarkers. Since not all biomarkers found by the algorithms are of equal (discriminating) quality we are only interested in a small biomarker subset that - as a combination - can be used as a fingerprint for a disease. Once a fingerprint for a particular disease (or medical condition) is identified, it can be used in clinical diagnostics to classify unknown spectra. In this thesis we have developed new algorithms for automatic extraction of disease specific fingerprints from mass spectrometry data. Special emphasis has been put on designing highly sensitive methods with respect to signal detection. Thanks to our statistically based approach our methods are able to detect signals even below the noise level inherent in data acquired by common MS machines, such as hormones. To provide access to these new classes of algorithms to collaborating groups we have created a web-based analysis platform that provides all necessary interfaces for data transfer, data analysis and result inspection. To prove the platform's practical relevance it has been utilized in several clinical studies two of which are presented in this thesis. In these studies it could be shown that our platform is superior to commercial systems with respect to fingerprint identification. As an outcome of these studies several fingerprints for different cancer types (bladder, kidney, testicle, pancreas, colon and thyroid) have been detected and validated. The clinical partners in fact emphasize that these results would be impossible with a less sensitive analysis tool (such as the currently available systems). In addition to the issue of reliably finding and handling signals in noise we faced the problem to handle very large amounts of data, since an average dataset of an individual is about 2.5 Gigabytes in size and we have data of hundreds to thousands of persons. To cope with these large datasets, we developed a new framework for a heterogeneous (quasi) ad-hoc Grid - an infrastructure that allows to integrate thousands of computing resources (e.g. Desktop Computers, Computing Clusters or specialized hardware, such as IBM's Cell Processor in a Playstation 3)
    corecore