147 research outputs found

    An edit distance for Reeb graphs

    Get PDF
    We consider the problem of assessing the similarity of 3D shapes using Reeb graphs from the standpoint of robustness under perturbations. For this purpose, 3D objects are viewed as spaces endowed with real-valued functions, while the similarity between the resulting Reeb graphs is addressed through a graph edit distance. The cases of smooth functions on manifolds and piecewise linear functions on polyhedra stand out as the most interesting ones. The main contribution of this paper is the introduction of a general edit distance suitable for comparing Reeb graphs in these settings. This edit distance promises to be useful for applications in 3D object retrieval because of its stability properties in the presence of noise

    Local Equivalence and Intrinsic Metrics between Reeb Graphs

    Get PDF
    As graphical summaries for topological spaces and maps, Reeb graphs are common objects in the computer graphics or topological data analysis literature. Defining good metrics between these objects has become an important question for applications, where it matters to quantify the extent by which two given Reeb graphs differ. Recent contributions emphasize this aspect, proposing novel distances such as {\em functional distortion} or {\em interleaving} that are provably more discriminative than the so-called {\em bottleneck distance}, being true metrics whereas the latter is only a pseudo-metric. Their main drawback compared to the bottleneck distance is to be comparatively hard (if at all possible) to evaluate. Here we take the opposite view on the problem and show that the bottleneck distance is in fact good enough {\em locally}, in the sense that it is able to discriminate a Reeb graph from any other Reeb graph in a small enough neighborhood, as efficiently as the other metrics do. This suggests considering the {\em intrinsic metrics} induced by these distances, which turn out to be all {\em globally} equivalent. This novel viewpoint on the study of Reeb graphs has a potential impact on applications, where one may not only be interested in discriminating between data but also in interpolating between them

    FPT-Algorithms for Computing Gromov-Hausdorff and Interleaving Distances Between Trees

    Get PDF
    The Gromov-Hausdorff distance is a natural way to measure the distortion between two metric spaces. However, there has been only limited algorithmic development to compute or approximate this distance. We focus on computing the Gromov-Hausdorff distance between two metric trees. Roughly speaking, a metric tree is a metric space that can be realized by the shortest path metric on a tree. Any finite tree with positive edge weight can be viewed as a metric tree where the weight is treated as edge length and the metric is the induced shortest path metric in the tree. Previously, Agarwal et al. showed that even for trees with unit edge length, it is NP-hard to approximate the Gromov-Hausdorff distance between them within a factor of 3. In this paper, we present a fixed-parameter tractable (FPT) algorithm that can approximate the Gromov-Hausdorff distance between two general metric trees within a multiplicative factor of 14. Interestingly, the development of our algorithm is made possible by a connection between the Gromov-Hausdorff distance for metric trees and the interleaving distance for the so-called merge trees. The merge trees arise in practice naturally as a simple yet meaningful topological summary (it is a variant of the Reeb graphs and contour trees), and are of independent interest. It turns out that an exact or approximation algorithm for the interleaving distance leads to an approximation algorithm for the Gromov-Hausdorff distance. One of the key contributions of our work is that we re-define the interleaving distance in a way that makes it easier to develop dynamic programming approaches to compute it. We then present a fixed-parameter tractable algorithm to compute the interleaving distance between two merge trees exactly, which ultimately leads to an FPT-algorithm to approximate the Gromov-Hausdorff distance between two metric trees. This exact FPT-algorithm to compute the interleaving distance between merge trees is of interest itself, as it is known that it is NP-hard to approximate it within a factor of 3, and previously the best known algorithm has an approximation factor of O(sqrt{n}) even for trees with unit edge length

    The Reeb Graph Edit Distance Is Universal

    Get PDF
    We consider the setting of Reeb graphs of piecewise linear functions and study distances between them that are stable, meaning that functions which are similar in the supremum norm ought to have similar Reeb graphs. We define an edit distance for Reeb graphs and prove that it is stable and universal, meaning that it provides an upper bound to any other stable distance. In contrast, via a specific construction, we show that the interleaving distance and the functional distortion distance on Reeb graphs are not universal

    Metric Graph Approximations of Geodesic Spaces

    Full text link
    A standard result in metric geometry is that every compact geodesic metric space can be approximated arbitrarily well by finite metric graphs in the Gromov-Hausdorff sense. It is well known that the first Betti number of the approximating graphs may blow up as the approximation gets finer. In our work, given a compact geodesic metric space XX, we define a sequence (δnX)n0(\delta^X_n)_{n \geq 0} of non-negative real numbers by δnX:=inf{dGH(X,G):G a finite metric graph, β1(G)n}.\delta^X_n:=\inf \{d_{\mathrm{GH}}(X,G): G \text{ a finite metric graph, } \beta_1(G)\leq n \} . By construction, and the above result, this is a non-increasing sequence with limit 00. We study this sequence and its rates of decay with nn. We also identify a precise relationship between the sequence and the first Vietoris-Rips persistence barcode of XX. Furthermore, we specifically analyze δ0X\delta_0^X and find upper and lower bounds based on hyperbolicity and other metric invariants. As a consequence of the tools we develop, our work also provides a Gromov-Hausdorff stability result for the Reeb construction on geodesic metric spaces with respect to the function given by distance to a reference point
    corecore