3,098 research outputs found

    Nonchaotic Nonlinear Motion Visualized in Complex Nanostructures by Stereographic 4D Electron Microscopy

    Get PDF
    Direct electron imaging with sufficient time resolution is a powerful tool for visualizing the three-dimensional (3D) mechanical motion and resolving the four-dimensional (4D) trajectories of many different components of a nanomachine, e.g., a NEMS device. Here, we report a nanoscale nonchaotic motion of a nano- and microstructured NiTi shape memory alloy in 4D electron microscopy. A huge amplitude oscillatory mechanical motion following laser heating is observed repetitively, likened to a 3D motion of a conductor’s baton. By time-resolved 4D stereographic reconstruction of the motion, prominent vibrational frequencies (3.0, 3.8, 6.8, and 14.5 MHz) are fully characterized, showing evidence of nonlinear behavior. Moreover, it is found that a stress (fluence)−strain (displacement) profile shows nonlinear elasticity. The observed resonances of the nanostructure are reminiscent of classical molecular quasi-periodic behavior, but here both the amplitude and frequency of the motion are visualized using ultrafast electron microscopy

    Elasto-buoyant heavy spheres: a unique way to test non-linear elasticity

    Full text link
    Extra-large deformations in ultra-soft elastic materials are ubiquitous, yet systematic studies and methods to understand the mechanics of such huge strains are lacking. Here we investigate this complex problem systematically with a simple experiment: by introducing a heavy bead of radius aa in an incompressible ultra-soft elastic medium. We find a scaling law for the penetration depth (δ\delta) of the bead inside the softest gels as δ∼a3/2\delta \sim a^{3/2}. While this result is inconsistent with an ideal neo-Hookean model of elastic deformation, according to which the displacement fields must diverge, it is vindicated by an original asymptotic analytic model developed in this article. This model demonstrates that the observed relationship is precisely at the demarcating boundary of what would be required for the field variables to either diverge or converge. This correspondence between a unique mathematical prediction and the experimental observation ushers in new insights into the behavior of the deformations of strongly non-linear materials

    Mitigation of Frame Acceleration Induced by a Buried Charge

    Get PDF
    In this thesis, methods to mitigate acceleration delivered to the frame of a vehicle with an attached v-shaped hull are investigated. The frame of a vehicle represents an alternative location for crew seating, as opposed to seats being secured to the floorboard. Mitigation techniques were investigated for three test setups: aluminum frame with a downwardly convex aluminum hull, steel frame with a downwardly convex steel hull, and a steel frame with a downwardly concave steel hull. Accelerations of the frame were measured using piezoelectric accelerometers placed at three different locations on the frame. These acceleration measurements were verified against video recorded by high speed cameras. Each test was intended to reduce peak accelerations experienced by the frame, and to reduce the width of the acceleration envelope at large g levels. Mitigation techniques focused on reducing the initial hull-frame interactions, while damping subsequent responses of the system. Mitigation systems and hull orientation were compared for their ability to reduce blast effects experienced by the frame

    From Statistical Correlations to Stochasticity and Size Effects in Sub-Micron Crystal Plasticity

    Get PDF
    Metals in small volumes display a strong dependence on initial conditions, which translates into size effects and stochastic mechanical responses. In the context of crystal plasticity, this amounts to the role of pre-existing dislocation configurations that may emerge due to prior processing. Here, we study a minimal but realistic model of uniaxial compression of sub-micron finite volumes. We show how the statistical correlations of pre-existing dislocation configurations may influence the mechanical response in multi-slip crystal plasticity, in connection to the finite volume size and the initial dislocation density. In addition, spatial dislocation correlations display evidence that plasticity is strongly influenced by the formation of walls composed of bound dislocation dipoles

    Viscoelastic and Viscoplastic Materials

    Get PDF
    This book introduces numerous selected advanced topics in viscoelastic and viscoplastic materials. The book effectively blends theoretical, numerical, modeling and experimental aspects of viscoelastic and viscoplastic materials that are usually encountered in many research areas such as chemical, mechanical and petroleum engineering. The book consists of 14 chapters that can serve as an important reference for researchers and engineers working in the field of viscoelastic and viscoplastic materials
    • …
    corecore