9,910 research outputs found

    Experimental Evaluation of a Haptic Interface for Endoscopic Simulation

    Get PDF
    The main goal of virtual reality based surgery simulators with haptic feedback is to provide an alternative to traditional training methods on animals, cadavers or real patients. Haptic feedback is a key feature for every surgery simulator for the training of hand-eye coordination. To address the need for higher fidelity and complexity in an endoscopic simulator, we have designed a new haptic interface, instrumented a clinical endoscope and integrated it with a software simulation for colonoscopy. The proposed haptic interface provides high translational force and rotational torque with combined electrical motors and passive brakes. This paper presents the evaluation of the haptic interface. Experimental analyzes are performed for characterization and performance evaluation. A model-based feed-forward control is implemented and the results show that the control successfully compensates for the device dynamics and nonlinearities such as Coulomb and viscous friction

    Design of a Haptic Interface for Medical Applications using Magneto-Rheological Fluid based Actuators

    Get PDF
    This thesis reports on the design, construction, and evaluation of a prototype two degrees-of-freedom (DOF) haptic interface, which takes advantage of Magneto-Rheological Fluid (MRF) based clutches for actuation. Haptic information provides important cues in teleoperated systems and enables the user to feel the interaction with a remote or virtual environment during teleoperation. The two main objectives in designing a haptic interface are stability and transparency. Indeed, deficiencies in these factors in haptics-enabled telerobotic systems has the introduction of haptics in medical environments where safety and reliability are prime considerations. An actuator with poor dynamics, high inertia, large size, and heavy weight can significantly undermine the stability and transparency of a teleoperated system. In this work, the potential benefits of MRF-based actuators to the field of haptics in medical applications are studied. Devices developed with such fluids are known to possess superior mechanical characteristics over conventional servo systems. These characteristics significantly contribute to improved stability and transparency of haptic devices. This idea is evaluated and verified through both theoretical and experimental points of view. The design of a small-scale MRF-based clutch, suitable for a multi-DOF haptic interface, is discussed and its performance is compared with conventional servo systems. This design is developed into four prototype clutches. In addition, a closed-loop torque control strategy is presented. The feedback signal used in this control scheme comes from the magnetic field acquired from embedded Hall sensors in the clutch. The controller uses this feedback signal to compensate for the nonlinear behavior using an estimated model, based on Artificial Neural Networks. Such a control strategy eliminates the need for torque sensors for providing feedback signals. The performance of the developed design and the effectiveness of the proposed modeling and control techniques are experimentally validated. Next, a 2-DOF haptic interface based on a distributed antagonistic configuration of MRF-based clutches is constructed for a class of medical applications. This device is incorporated in a master-slave teleoperation setup that is used for applications involving needle insertion and soft-tissue palpation. Phantom and in vitro animal tissue were used to assess the performance of the haptic interface. The results show a great potential of MRF-based actuators for integration in haptic devices for medical interventions that require reliable, safe, accurate, highly transparent, and stable force reflection

    Optimal dimensional synthesis of force feedback lower arm exoskeletons

    Get PDF
    This paper presents multi-criteria design optimization of parallel mechanism based force feedback exoskeletons for human forearm and wrist. The optimized devices are aimed to be employed as a high fidelity haptic interfaces. Multiple design objectives are discussed and classified for the devices and the optimization problem to study the trade-offs between these criteria is formulated. Dimensional syntheses are performed for optimal global kinematic and dynamic performance, utilizing a Pareto front based framework, for two spherical parallel mechanisms that satisfy the ergonomic necessities of a human forearm and wrist. Two optimized mechanisms are compared and discussed in the light of multiple design criteria. Finally, kinematic structure and dimensions of an optimal exoskeleton are decided

    Applying forces to elastic network models of large biomolecules using a haptic feedback device

    Get PDF
    Elastic network models of biomolecules have proved to be relatively good at predicting global conformational changes particularly in large systems. Software that facilitates rapid and intuitive exploration of conformational change in elastic network models of large biomolecules in response to externally applied forces would therefore be of considerable use, particularly if the forces mimic those that arise in the interaction with a functional ligand. We have developed software that enables a user to apply forces to individual atoms of an elastic network model of a biomolecule through a haptic feedback device or a mouse. With a haptic feedback device the user feels the response to the applied force whilst seeing the biomolecule deform on the screen. Prior to the interactive session normal mode analysis is performed, or pre-calculated normal mode eigenvalues and eigenvectors are loaded. For large molecules this allows the memory and number of calculations to be reduced by employing the idea of the important subspace, a relatively small space of the first M lowest frequency normal mode eigenvectors within which a large proportion of the total fluctuation occurs. Using this approach it was possible to study GroEL on a standard PC as even though only 2.3% of the total number of eigenvectors could be used, they accounted for 50% of the total fluctuation. User testing has shown that the haptic version allows for much more rapid and intuitive exploration of the molecule than the mouse version

    Sampled data systems passivity and discrete port-Hamiltonian systems

    Get PDF
    In this paper, we present a novel way to approach the interconnection of a continuous and a discrete time physical system first presented in [1][2] [3]. This is done in a way which preserves passivity of the coupled system independently of the sampling time T. This strategy can be used both in the field of telemanipulation, for the implementation of a passive master/slave system on a digital transmission line with varying time delays and possible loss of packets (e.g., the Internet), and in the field of haptics, where the virtual environment should `feelÂż like a physical equivalent system

    The Analysis of design and manufacturing tasks using haptic and immersive VR - Some case studies

    Get PDF
    The use of virtual reality in interactive design and manufacture has been researched extensively but the practical application of this technology in industry is still very much in its infancy. This is surprising as one would have expected that, after some 30 years of research commercial applications of interactive design or manufacturing planning and analysis would be widespread throughout the product design domain. One of the major but less well known advantages of VR technology is that logging the user gives a great deal of rich data which can be used to automatically generate designs or manufacturing instructions, analyse design and manufacturing tasks, map engineering processes and, tentatively, acquire expert knowledge. The authors feel that the benefits of VR in these areas have not been fully disseminated to the wider industrial community and - with the advent of cheaper PC-based VR solutions - perhaps a wider appreciation of the capabilities of this type of technology may encourage companies to adopt VR solutions for some of their product design processes. With this in mind, this paper will describe in detail applications of haptics in assembly demonstrating how user task logging can lead to the analysis of design and manufacturing tasks at a level of detail not previously possible as well as giving usable engineering outputs. The haptic 3D VR study involves the use of a Phantom and 3D system to analyse and compare this technology against real-world user performance. This work demonstrates that the detailed logging of tasks in a virtual environment gives considerable potential for understanding how virtual tasks can be mapped onto their real world equivalent as well as showing how haptic process plans can be generated in a similar manner to the conduit design and assembly planning HMD VR tool reported in PART A. The paper concludes with a view as to how the authors feel that the use of VR systems in product design and manufacturing should evolve in order to enable the industrial adoption of this technology in the future

    Contributing to VRPN with a new server for haptic devices (ext. version)

    Get PDF
    This article is an extended version of the poster paper: Cuevas-Rodriguez, M., Gonzalez-Toledo D., Molina-Tanco, L., Reyes-Lecuona A., 2015, November. “Contributing to VRPN with a new server for haptic devices”. In Proceedings of the ACM symposium on Virtual reality software and technology. ACM.http://dx.doi.org/10.1145/2821592.2821639VRPN is a middleware to access Virtual Reality peripherals. VRPN standard distribution supports Geomagic¼ (formerly Phantom) haptic devices through the now superseded GHOST library. This paper presents VRPN OpenHaptics Server, a contribution to VRPN library that fully reimplements VRPN support of Geomagic Haptic Devices. The implementation is based on the OpenHaptics v3.0 HLAPI layer, which supports all Geomagic Haptic Devices. We present the architecture of the contributed server, a detailed description of the offered API and an analysis of its performance in a set of example scenarios.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Haptic guidance improves the visuo-manual tracking of trajectories

    Get PDF
    BACKGROUND: Learning to perform new movements is usually achieved by following visual demonstrations. Haptic guidance by a force feedback device is a recent and original technology which provides additional proprioceptive cues during visuo-motor learning tasks. The effects of two types of haptic guidances-control in position (HGP) or in force (HGF)-on visuo-manual tracking ("following") of trajectories are still under debate. METHODOLOGY/PRINCIPALS FINDINGS: Three training techniques of haptic guidance (HGP, HGF or control condition, NHG, without haptic guidance) were evaluated in two experiments. Movements produced by adults were assessed in terms of shapes (dynamic time warping) and kinematics criteria (number of velocity peaks and mean velocity) before and after the training sessions. CONCLUSION/SIGNIFICANCE: These results show that the addition of haptic information, probably encoded in force coordinates, play a crucial role on the visuo-manual tracking of new trajectories
    • 

    corecore