6,078 research outputs found

    Topologies for intermediate logics

    Full text link
    We investigate the problem of characterizing the classes of Grothendieck toposes whose internal logic satisfies a given assertion in the theory of Heyting algebras, and introduce natural analogues of the double negation and De Morgan topologies on an elementary topos for a wide class of intermediate logics.Comment: 21 page

    Propositional logic with short-circuit evaluation: a non-commutative and a commutative variant

    Get PDF
    Short-circuit evaluation denotes the semantics of propositional connectives in which the second argument is evaluated only if the first argument does not suffice to determine the value of the expression. Short-circuit evaluation is widely used in programming, with sequential conjunction and disjunction as primitive connectives. We study the question which logical laws axiomatize short-circuit evaluation under the following assumptions: compound statements are evaluated from left to right, each atom (propositional variable) evaluates to either true or false, and atomic evaluations can cause a side effect. The answer to this question depends on the kind of atomic side effects that can occur and leads to different "short-circuit logics". The basic case is FSCL (free short-circuit logic), which characterizes the setting in which each atomic evaluation can cause a side effect. We recall some main results and then relate FSCL to MSCL (memorizing short-circuit logic), where in the evaluation of a compound statement, the first evaluation result of each atom is memorized. MSCL can be seen as a sequential variant of propositional logic: atomic evaluations cannot cause a side effect and the sequential connectives are not commutative. Then we relate MSCL to SSCL (static short-circuit logic), the variant of propositional logic that prescribes short-circuit evaluation with commutative sequential connectives. We present evaluation trees as an intuitive semantics for short-circuit evaluation, and simple equational axiomatizations for the short-circuit logics mentioned that use negation and the sequential connectives only.Comment: 34 pages, 6 tables. Considerable parts of the text below stem from arXiv:1206.1936, arXiv:1010.3674, and arXiv:1707.05718. Together with arXiv:1707.05718, this paper subsumes most of arXiv:1010.367

    A Direct Version of Veldman's Proof of Open Induction on Cantor Space via Delimited Control Operators

    Get PDF
    First, we reconstruct Wim Veldman's result that Open Induction on Cantor space can be derived from Double-negation Shift and Markov's Principle. In doing this, we notice that one has to use a countable choice axiom in the proof and that Markov's Principle is replaceable by slightly strengthening the Double-negation Shift schema. We show that this strengthened version of Double-negation Shift can nonetheless be derived in a constructive intermediate logic based on delimited control operators, extended with axioms for higher-type Heyting Arithmetic. We formalize the argument and thus obtain a proof term that directly derives Open Induction on Cantor space by the shift and reset delimited control operators of Danvy and Filinski

    Classical Mathematics for a Constructive World

    Full text link
    Interactive theorem provers based on dependent type theory have the flexibility to support both constructive and classical reasoning. Constructive reasoning is supported natively by dependent type theory and classical reasoning is typically supported by adding additional non-constructive axioms. However, there is another perspective that views constructive logic as an extension of classical logic. This paper will illustrate how classical reasoning can be supported in a practical manner inside dependent type theory without additional axioms. We will see several examples of how classical results can be applied to constructive mathematics. Finally, we will see how to extend this perspective from logic to mathematics by representing classical function spaces using a weak value monad.Comment: v2: Final copy for publicatio

    The Fan Theorem, its strong negation, and the determinacy of games

    Full text link
    IIn the context of a weak formal theory called Basic Intuitionistic Mathematics BIM\mathsf{BIM}, we study Brouwer's Fan Theorem and a strong negation of the Fan Theorem, Kleene's Alternative (to the Fan Theorem). We prove that the Fan Theorem is equivalent to contrapositions of a number of intuitionistically accepted axioms of countable choice and that Kleene's Alternative is equivalent to strong negations of these statements. We also discuss finite and infinite games and introduce a constructively useful notion of determinacy. We prove that the Fan Theorem is equivalent to the Intuitionistic Determinacy Theorem, saying that every subset of Cantor space is, in our constructively meaningful sense, determinate, and show that Kleene's Alternative is equivalent to a strong negation of a special case of this theorem. We then consider a uniform intermediate value theorem and a compactness theorem for classical propositional logic, and prove that the Fan Theorem is equivalent to each of these theorems and that Kleene's Alternative is equivalent to strong negations of them. We end with a note on a possibly important statement, provable from principles accepted by Brouwer, that one might call a Strong Fan Theorem.Comment: arXiv admin note: text overlap with arXiv:1106.273

    Intuitionism and the Modal Logic of Vagueness

    Get PDF
    Intuitionistic logic provides an elegant solution to the Sorites Paradox. Its acceptance has been hampered by two factors. First, the lack of an accepted semantics for languages containing vague terms has led even philosophers sympathetic to intuitionism to complain that no explanation has been given of why intuitionistic logic is the correct logic for such languages. Second, switching from classical to intuitionistic logic, while it may help with the Sorites, does not appear to offer any advantages when dealing with the so-called paradoxes of higher-order vagueness. We offer a proposal that makes strides on both issues. We argue that the intuitionist’s characteristic rejection of any third alethic value alongside true and false is best elaborated by taking the normal modal system S4M to be the sentential logic of the operator ‘it is clearly the case that’. S4M opens the way to an account of higher-order vagueness which avoids the paradoxes that have been thought to infect the notion. S4M is one of the modal counterparts of the intuitionistic sentential calculus and we use this fact to explain why IPC is the correct sentential logic to use when reasoning with vague statements. We also show that our key results go through in an intuitionistic version of S4M. Finally, we deploy our analysis to reply to Timothy Williamson’s objections to intuitionistic treatments of vagueness

    Adding Logical Operators to Tree Pattern Queries on Graph-Structured Data

    Full text link
    As data are increasingly modeled as graphs for expressing complex relationships, the tree pattern query on graph-structured data becomes an important type of queries in real-world applications. Most practical query languages, such as XQuery and SPARQL, support logical expressions using logical-AND/OR/NOT operators to define structural constraints of tree patterns. In this paper, (1) we propose generalized tree pattern queries (GTPQs) over graph-structured data, which fully support propositional logic of structural constraints. (2) We make a thorough study of fundamental problems including satisfiability, containment and minimization, and analyze the computational complexity and the decision procedures of these problems. (3) We propose a compact graph representation of intermediate results and a pruning approach to reduce the size of intermediate results and the number of join operations -- two factors that often impair the efficiency of traditional algorithms for evaluating tree pattern queries. (4) We present an efficient algorithm for evaluating GTPQs using 3-hop as the underlying reachability index. (5) Experiments on both real-life and synthetic data sets demonstrate the effectiveness and efficiency of our algorithm, from several times to orders of magnitude faster than state-of-the-art algorithms in terms of evaluation time, even for traditional tree pattern queries with only conjunctive operations.Comment: 16 page
    • …
    corecore