3,522 research outputs found

    The role of anterior cingulate cortex in the affective evaluation of conflict

    Get PDF
    An influential theory of anterior cingulate cortex (ACC) function argues that this brain region plays a crucial role in the affective evaluation of performance monitoring and control demands. Specifically, control-demanding processes such as response conflict are thought to be registered as aversive signals by ACC, which in turn triggers processing adjustments to support avoidance learning. In support of conflict being treated as an aversive event, recent behavioral studies demonstrated that incongruent (i.e., conflict inducing), relative to congruent, stimuli can speed up subsequent negative, relative to positive, affective picture processing. Here, we used fMRI to investigate directly whether ACC activity in response to negative versus positive pictures is modulated by preceding control demands, consisting of conflict and task-switching conditions. The results show that negative, relative to positive, pictures elicited higher ACC activation after congruent, relative to incongruent, trials, suggesting that ACC's response to negative (positive) pictures was indeed affectively primed by incongruent (congruent) trials. Interestingly, this pattern of results was observed on task repetitions but disappeared on task alternations. This study supports the proposal that conflict induces negative affect and is the first to show that this affective signal is reflected in ACC activation

    Hierarchical control over effortful behavior by rodent medial frontal cortex : a computational model

    Get PDF
    The anterior cingulate cortex (ACC) has been the focus of intense research interest in recent years. Although separate theories relate ACC function variously to conflict monitoring, reward processing, action selection, decision making, and more, damage to the ACC mostly spares performance on tasks that exercise these functions, indicating that they are not in fact unique to the ACC. Further, most theories do not address the most salient consequence of ACC damage: impoverished action generation in the presence of normal motor ability. In this study we develop a computational model of the rodent medial prefrontal cortex that accounts for the behavioral sequelae of ACC damage, unifies many of the cognitive functions attributed to it, and provides a solution to an outstanding question in cognitive control research-how the control system determines and motivates what tasks to perform. The theory derives from recent developments in the formal study of hierarchical control and learning that highlight computational efficiencies afforded when collections of actions are represented based on their conjoint goals. According to this position, the ACC utilizes reward information to select tasks that are then accomplished through top-down control over action selection by the striatum. Computational simulations capture animal lesion data that implicate the medial prefrontal cortex in regulating physical and cognitive effort. Overall, this theory provides a unifying theoretical framework for understanding the ACC in terms of the pivotal role it plays in the hierarchical organization of effortful behavior

    Computational models of anterior cingulate cortex : at the crossroads between prediction and effort

    Get PDF
    In the last two decades the anterior cingulate cortex (ACC) has become one of the most investigated areas of the brain. Extensive neuroimaging evidence suggests countless functions for this region, ranging from conflict and error coding, to social cognition, pain and effortful control. In response to this burgeoning amount of data, a proliferation of computational models has tried to characterize the neurocognitive architecture of ACC. Early seminal models provided a computational explanation for a relatively circumscribed set of empirical findings, mainly accounting for EEG and fMRI evidence. More recent models have focused on ACC's contribution to effortful control. In parallel to these developments, several proposals attempted to explain within a single computational framework a wider variety of empirical findings that span different cognitive processes and experimental modalities. Here we critically evaluate these modeling attempts, highlighting the continued need to reconcile the array of disparate ACC observations within a coherent, unifying framework

    Value and prediction error in medial frontal cortex: integrating the single-unit and systems levels of analysis

    Get PDF
    The role of the anterior cingulate cortex (ACC) in cognition has been extensively investigated with several techniques, including single-unit recordings in rodents and monkeys and EEG and fMRI in humans. This has generated a rich set of data and points of view. Important theoretical functions proposed for ACC are value estimation, error detection, error-likelihood estimation, conflict monitoring, and estimation of reward volatility. A unified view is lacking at this time, however. Here we propose that online value estimation could be the key function underlying these diverse data. This is instantiated in the reward value and prediction model (RVPM). The model contains units coding for the value of cues (stimuli or actions) and units coding for the differences between such values and the actual reward (prediction errors). We exposed the model to typical experimental paradigms from single-unit, EEG, and fMRI research to compare its overall behavior with the data from these studies. The model reproduced the ACC behavior of previous single-unit, EEG, and fMRI studies on reward processing, error processing, conflict monitoring, error-likelihood estimation, and volatility estimation, unifying the interpretations of the role performed by the ACC in some aspects of cognition

    Brain activations related to saccadic response conflict are not sensitive to time on task

    Get PDF
    Establishing a role of the dorsal medial frontal cortex in the performance monitoring and cognitive control has been a challenge to neuroscientists for the past decade. In light of recent findings, the conflict monitoring hypothesis has been elaborated to an action-outcome predictor theory. One of the findings that led to this re-evaluation was the fMRI study in which conflict-related brain activity was investigated in terms of the so-called time on task effect, i.e. a linear increase of the BOLD signal with longer response times. The aim of this study was to investigate brain regions involved in the processing of saccadic response conflict and to account for the time on task effect. A modified spatial cueing task was implemented in the event-related fMRI study with oculomotor responses. The results revealed several brain regions which show higher activity for incongruent trials in comparison to the congruent ones, including pre-supplementary motor area together with the frontal and parietal regions. Further analysis accounting for the effect of response time provided evidence that these brain activations were not sensitive to time on task but reflected purely the congruency effect

    Probing emotional influences on cognitive control: an ALE meta-analysis of cognition emotion interactions

    Get PDF
    Increasing research documents an integration of cognitive control and affective processes. Despite a surge of interest in investigating the exact nature of this integration, no consensus has been reached on the precise neuroanatomical network involved. Using the Activation Likelihood Estimation meta-analysis method, we examined 43 functional Magnetic Resonance Imaging (fMRI) studies (total number of foci = 332; total number of participants, N =820) from the literature that have reported significant interactions between emotion and cognitive control. Meta-analytic results revealed that concurrent emotion (relative to emotionally neutral trials) consistently increased neural activation during high relative to low cognitive control conditions across studies and paradigms. Specifically, these activations emerged in regions commonly implicated in cognitive control such as the lateral prefrontal cortex (inferior frontal junction, inferior frontal gyrus), the medial prefrontal cortex, and the basal ganglia. In addition, some areas emerged during the interaction contrast that were not present during one of the main effects and included the subgenual anterior cingulate cortex and the precuneus. These data provide new evidence for a network of cognition emotion interaction within a cognitive control setting. The findings are discussed within current theories of cognitive and attentional control

    Overlapping neural systems represent cognitive effort and reward anticipation

    Get PDF
    Anticipating a potential benefit and how difficult it will be to obtain it are valuable skills in a constantly changing environment. In the human brain, the anticipation of reward is encoded by the Anterior Cingulate Cortex (ACC) and Striatum. Naturally, potential rewards have an incentive quality, resulting in a motivational effect improving performance. Recently it has been proposed that an upcoming task requiring effort induces a similar anticipation mechanism as reward, relying on the same cortico-limbic network. However, this overlapping anticipatory activity for reward and effort has only been investigated in a perceptual task. Whether this generalizes to high-level cognitive tasks remains to be investigated. To this end, an fMRI experiment was designed to investigate anticipation of reward and effort in cognitive tasks. A mental arithmetic task was implemented, manipulating effort (difficulty), reward, and delay in reward delivery to control for temporal confounds. The goal was to test for the motivational effect induced by the expectation of bigger reward and higher effort. The results showed that the activation elicited by an upcoming difficult task overlapped with higher reward prospect in the ACC and in the striatum, thus highlighting a pivotal role of this circuit in sustaining motivated behavior

    The role of the anterior cingulate cortex in prediction error and signaling surprise

    Get PDF
    In the past two decades, reinforcement learning (RL) has become a popular framework for understanding brain function. A key component of RL models, prediction error, has been associated with neural signals throughout the brain, including subcortical nuclei, primary sensory cortices, and prefrontal cortex. Depending on the location in which activity is observed, the functional interpretation of prediction error may change: Prediction errors may reflect a discrepancy in the anticipated and actual value of reward, a signal indicating the salience or novelty of a stimulus, and many other interpretations. Anterior cingulate cortex (ACC) has long been recognized as a region involved in processing behavioral error, and recent computational models of the region have expanded this interpretation to include a more general role for the region in predicting likely events, broadly construed, and signaling deviations between expected and observed events. Ongoing modeling work investigating the interaction between ACC and additional regions involved in cognitive control suggests an even broader role for cingulate in computing a hierarchically structured surprise signal critical for learning models of the environment. The result is a predictive coding model of the frontal lobes, suggesting that predictive coding may be a unifying computational principle across the neocortex. This paper reviews the brain mechanisms responsible for surprise; focusing on the Anterior Cingulate Cortex (ACC), long-known to play a role in behavioral-error, with a recently-expanded role in predicting likely' events and signaling deviations between expected and observed events. It argues for ACC's role in in surprise and learning, based on recent modelling work. As such, the paper provides the neuroscience complement to the psychological and computational proposals of other papers in the volume

    Differentiating associations between tasks and outcomes in the human brain

    Get PDF
    2022 Summer.Includes bibliographical references.In order to successfully achieve their goals in a noisy and changing environment, organisms must continually learn both Pavlovian (stimulus-outcome or S-O) and instrumental (action-outcome or A-O) associations. A wide range of brain regions are implicated in reinforcement learning and decision-making, including the basal ganglia, medial prefrontal cortex, the dorsolateral prefrontal cortex (dlPFC), and the anterior cingulate cortex (ACC). One possible explanation of disparate findings is that activation depends on the nature of the action or response under consideration. To investigate representations of task-reward associations, subjects switched between an emotional judgement task and a spatial judgement task, combined with either a high or low level of reward. A general linear model (GLM) compared activation for different combinations of task and reward. A cluster in the mid-prefrontal cortex was more active for right versus left response, whereas a cluster in the midbrain near the brainstem was more active for left responses. Performance of the spatial task was associated with activation in the ventral occipital cortex and ventral prefrontal cortex. Clusters in the posterior parietal cortex and lateral prefrontal cortex were more active during the emotion task. Receiving a large reward was accompanied by activation in primary somatosensory cortex and auditory cortex, while receiving a low reward appeared to recruit the anterior cingulate cortex. Comparing trials which yielded a reward versus trials with no reward revealed activation in the dorsal prefrontal cortex. A 2-way ANOVA examining independent contributions of response and reward found an effect of response in cuneus and pre-cuneus, an effect of reward in anterior insula and sensorimotor cortex, and an interaction in the post-central gyrus. A 2-way ANOVA of task and reward found a main effect of task in several clusters in the medial occipital cortex, a main effect of reward in somatosensory cortex and anterior insula, and an interaction in the ventral occipital and anterior prefrontal cortex
    corecore