3,727 research outputs found

    Neural Responses to Complex Auditory Rhythms: The Role of Attending

    Get PDF
    The aim of this study was to explore the role of attention in pulse and meter perception using complex rhythms. We used a selective attention paradigm in which participants attended to either a complex auditory rhythm or a visually presented word list. Performance on a reproduction task was used to gauge whether participants were attending to the appropriate stimulus. We hypothesized that attention to complex rhythms – which contain no energy at the pulse frequency – would lead to activations in motor areas involved in pulse perception. Moreover, because multiple repetitions of a complex rhythm are needed to perceive a pulse, activations in pulse-related areas would be seen only after sufficient time had elapsed for pulse perception to develop. Selective attention was also expected to modulate activity in sensory areas specific to the modality. We found that selective attention to rhythms led to increased BOLD responses in basal ganglia, and basal ganglia activity was observed only after the rhythms had cycled enough times for a stable pulse percept to develop. These observations suggest that attention is needed to recruit motor activations associated with the perception of pulse in complex rhythms. Moreover, attention to the auditory stimulus enhanced activity in an attentional sensory network including primary auditory cortex, insula, anterior cingulate, and prefrontal cortex, and suppressed activity in sensory areas associated with attending to the visual stimulus

    Temporal sampling in vision and the implications for dyslexia

    No full text
    It has recently been suggested that dyslexia may manifest as a deficit in the neural synchrony underlying language-based codes (Goswami, 2011), such that the phonological deficits apparent in dyslexia occur as a consequence of poor synchronisation of oscillatory brain signals to the sounds of language. There is compelling evidence to support this suggestion, and it provides an intriguing new development in understanding the aetiology of dyslexia. It is undeniable that dyslexia is associated with poor phonological coding, however, reading is also a visual task, and dyslexia has also been associated with poor visual coding, particularly visuo-spatial sensitivity. It has been hypothesized for some time that specific frequency oscillations underlie visual perception. Although little research has been done looking specifically at dyslexia and cortical frequency oscillations, it is possible to draw on converging evidence from visual tasks to speculate that similar deficits could occur in temporal frequency oscillations in the visual domain in dyslexia. Thus, here the plausibility of a visual correlate of the Temporal Sampling Framework is considered, leading to specific hypotheses and predictions for future research. A common underlying neural mechanism in dyslexia, may subsume qualitatively different manifestations of reading difficulty, which is consistent with the heterogeneity of the disorder, and may open the door for a new generation of exciting research

    The influence of external and internal motor processes on human auditory rhythm perception

    Get PDF
    Musical rhythm is composed of organized temporal patterns, and the processes underlying rhythm perception are found to engage both auditory and motor systems. Despite behavioral and neuroscience evidence converging to this audio-motor interaction, relatively little is known about the effect of specific motor processes on auditory rhythm perception. This doctoral thesis was devoted to investigating the influence of both external and internal motor processes on the way we perceive an auditory rhythm. The first half of the thesis intended to establish whether overt body movement had a facilitatory effect on our ability to perceive the auditory rhythmic structure, and whether this effect was modulated by musical training. To this end, musicians and non-musicians performed a pulse-finding task either using natural body movement or through listening only, and produced their identified pulse by finger tapping. The results showed that overt movement benefited rhythm (pulse) perception especially for non-musicians, confirming the facilitatory role of external motor activities in hearing the rhythm, as well as its interaction with musical training. The second half of the thesis tested the idea that indirect, covert motor input, such as that transformed from the visual stimuli, could influence our perceived structure of an auditory rhythm. Three experiments examined the subjectively perceived tempo of an auditory sequence under different visual motion stimulations, while the auditory and visual streams were presented independently of each other. The results revealed that the perceived auditory tempo was accordingly influenced by the concurrent visual motion conditions, and the effect was related to the increment or decrement of visual motion speed. This supported the hypothesis that the internal motor information extracted from the visuomotor stimulation could be incorporated into the percept of an auditory rhythm. Taken together, the present thesis concludes that, rather than as a mere reaction to the given auditory input, our motor system plays an important role in contributing to the perceptual process of the auditory rhythm. This can occur via both external and internal motor activities, and may not only influence how we hear a rhythm but also under some circumstances improve our ability to hear the rhythm.Musikalische Rhythmen bestehen aus zeitlich strukturierten Mustern akustischer Stimuli. Es konnte gezeigt werden, dass die Prozesse, welche der Rhythmuswahrnehmung zugrunde liegen, sowohl motorische als auch auditive Systeme nutzen. Obwohl sich für diese auditiv-motorischen Interaktionen sowohl in den Verhaltenswissenschaften als auch Neurowissenschaften übereinstimmende Belege finden, weiß man bislang relativ wenig über die Auswirkungen spezifischer motorischer Prozesse auf die auditive Rhythmuswahrnehmung. Diese Doktorarbeit untersucht den Einfluss externaler und internaler motorischer Prozesse auf die Art und Weise, wie auditive Rhythmen wahrgenommen werden. Der erste Teil der Arbeit diente dem Ziel herauszufinden, ob körperliche Bewegungen es dem Gehirn erleichtern können, die Struktur von auditiven Rhythmen zu erkennen, und, wenn ja, ob dieser Effekt durch ein musikalisches Training beeinflusst wird. Um dies herauszufinden wurde Musikern und Nichtmusikern die Aufgabe gegeben, innerhalb von präsentierten auditiven Stimuli den Puls zu finden, wobei ein Teil der Probanden währenddessen Körperbewegungen ausführen sollte und der andere Teil nur zuhören sollte. Anschließend sollten die Probanden den gefundenen Puls durch Finger-Tapping ausführen, wobei die Reizgaben sowie die Reaktionen mittels eines computerisierten Systems kontrolliert wurden. Die Ergebnisse zeigen, dass offen ausgeführte Bewegungen die Wahrnehmung des Pulses vor allem bei Nichtmusikern verbesserten. Diese Ergebnisse bestätigen, dass Bewegungen beim Hören von Rhythmen unterstützend wirken. Außerdem zeigte sich, dass hier eine Wechselwirkung mit dem musikalischen Training besteht. Der zweite Teil der Doktorarbeit überprüfte die Idee, dass indirekte, verdeckte Bewegungsinformationen, wie sie z.B. in visuellen Stimuli enthalten sind, die wahrgenommene Struktur von auditiven Rhythmen beeinflussen können. Drei Experimente untersuchten, inwiefern das subjektiv wahrgenommene Tempo einer akustischen Sequenz durch die Präsentation unterschiedlicher visueller Bewegungsreize beeinflusst wird, wobei die akustischen und optischen Stimuli unabhängig voneinander präsentiert wurden. Die Ergebnisse zeigten, dass das wahrgenommene auditive Tempo durch die visuellen Bewegungsinformationen beeinflusst wird, und dass der Effekt in Verbindung mit der Zunahme oder Abnahme der visuellen Geschwindigkeit steht. Dies unterstützt die Hypothese, dass internale Bewegungsinformationen, welche aus visuomotorischen Reizen extrahiert werden, in die Wahrnehmung eines auditiven Rhythmus integriert werden können. Zusammen genommen, 5 zeigt die vorgestellte Arbeit, dass unser motorisches System eine wichtige Rolle im Wahrnehmungsprozess von auditiven Rhythmen spielt. Dies kann sowohl durch äußere als auch durch internale motorische Aktivitäten geschehen, und beeinflusst nicht nur die Art, wie wir Rhythmen hören, sondern verbessert unter bestimmten Bedingungen auch unsere Fähigkeit Rhythmen zu identifizieren

    Integrating Spatial Working Memory and Remote Memory: Interactions between the Medial Prefrontal Cortex and Hippocampus

    Get PDF
    In recent years, two separate research streams have focused on information sharing between the medial prefrontal cortex (mPFC) and hippocampus (HC). Research into spatial working memory has shown that successful execution of many types of behaviors requires synchronous activity in the theta range between the mPFC and HC, whereas studies of memory consolidation have shown that shifts in area dependency may be temporally modulated. While the nature of information that is being communicated is still unclear, spatial working memory and remote memory recall is reliant on interactions between these two areas. This review will present recent evidence that shows that these two processes are not as separate as they first appeared. We will also present a novel conceptualization of the nature of the medial prefrontal representation and how this might help explain this area’s role in spatial working memory and remote memory recall

    Contributions of local speech encoding and functional connectivity to audio-visual speech perception

    Get PDF
    Seeing a speaker’s face enhances speech intelligibility in adverse environments. We investigated the underlying network mechanisms by quantifying local speech representations and directed connectivity in MEG data obtained while human participants listened to speech of varying acoustic SNR and visual context. During high acoustic SNR speech encoding by temporally entrained brain activity was strong in temporal and inferior frontal cortex, while during low SNR strong entrainment emerged in premotor and superior frontal cortex. These changes in local encoding were accompanied by changes in directed connectivity along the ventral stream and the auditory-premotor axis. Importantly, the behavioral benefit arising from seeing the speaker’s face was not predicted by changes in local encoding but rather by enhanced functional connectivity between temporal and inferior frontal cortex. Our results demonstrate a role of auditory-frontal interactions in visual speech representations and suggest that functional connectivity along the ventral pathway facilitates speech comprehension in multisensory environments

    Oszillatorische Gamma-Band-Aktivität bei der Verarbeitung auditorischer Reize im Kurzzeitgedächtnis im MEG

    Get PDF
    Recent studies have suggested an important role of cortical gamma oscillatory activity (30-100 Hz) as a correlate of encoding, maintaining and retrieving auditory, visual or tactile information in and from memory. It was shown that these cortical stimulus representations were modulated by attention processes. Gamma-band activity (GBA) occurred as an induced response peaking at approximately 200-300 ms after stimulus presentation. Induced cortical responses appear as non-phase-locked activity and are assumed to reflect active cortical processing rather than passive perception. Induced GBA peaking 200-300 ms after stimulus presentation has been assumed to reflect differences between experimental conditions containing various stimuli. By contrast, the relationship between specific oscillatory signals and the representation of individual stimuli has remained unclear. The present study aimed at the identification of such stimulus-specific gamma-band components. We used magnetoencephalography (MEG) to assess gamma activity during an auditory spatial delayed matching-to-sample task. 28 healthy adults were assigned to one of two groups R and L who were presented with only right- or left-lateralized sounds, respectively. Two sample stimuli S1 with lateralization angles of either 15° or 45° deviation from the midsagittal plane were used in each group. Participants had to memorize the lateralization angle of S1 and compare it to a second lateralized sound S2 presented after an 800-ms delay phase. S2 either had the same or a different lateralization angle as S1. After the presentation of S2, subjects had to indicate whether S1 and S2 matched or not. Statistical probability mapping was applied to the signals at sensor level to identify spectral amplitude differences between 15° and 45° stimuli. We found distinct gamma-band components reflecting each sample stimulus with center frequencies ranging between 59 and 72 Hz in different sensors over parieto-occipital cortex contralateral to the side of stimulation. These oscillations showed maximal spectral amplitudes during the middle 200-300 ms of the delay phase and decreased again towards its end. Additionally, we investigated correlations between the activation strength of the gamma-band components and memory task performance. The magnitude of differentiation between oscillatory components representing 'preferred' and 'nonpreferred' stimuli during the final 100 ms of the delay phase correlated positively with task performance. These findings suggest that the observed gamma-band components reflect the activity of neuronal networks tuned to specific auditory spatial stimulus features. The activation of these networks seems to contribute to the maintenance of task-relevant information in short-term memory.Ergebnisse aus aktuellen Studien legen nahe, dass kortikale oszillatorische Aktivität im Gamma-Bereich (30-100 Hz) eine wichtige Rolle für verschiedene kognitive Prozesse spielt. Dazu zählen das Kodieren, die Aufrechterhaltung und der Abruf auditorischer, visueller oder taktiler Informationen in das bzw. aus dem Gedächtnis. Es konnte gezeigt werden, dass diese kortikale Aktivität durch Aufmerksamkeitsprozesse beeinflusst wird. Gamma-Aktivität trat bei vorangegangenen Untersuchungen als induzierte Antwort ca. 200-300 ms nach Stimuluspräsentation auf. Es wird angenommen, dass diese nicht phasengebundenen kortikalen Reizantworten aktive kortikale Verarbeitungs-prozesse widerspiegeln. In früheren Studien wurde induzierte Gamma-Aktivität während der Aufrechterhaltung von Stimulusinformationen über Regionen gefunden, die an der Verarbeitung aufgabenrelevanter Reizmerkmale beteiligt sind. Diese Antworten im Gamma-Bereich spiegelten Unterschiede zwischen verschieden experimentellen Bedingungen wider, jedoch ist wenig über die Repräsentation spezifischer Stimuluseigenschaften durch Gamma-Aktivität bekannt. Mit der vorliegenden Studie haben wir versucht, solche stimulus spezifischen Gamma-Komponenten zu untersuchen. Dafür verwendeten wir Magnetenzephalographie (MEG) und eine auditorische räumliche “delayed matching-to-sample“ Aufgabe. 28 gesunde Erwachsene wurden dabei zwei verschiedenen Gruppen zugeordnet. Gruppe R bekam rechtslateralisierte Stimuli präsentiert, während diese in Gruppe L linkslateralisiert waren. Dabei unterschieden sich die Reize nur in ihrer räumlichen Charakteristik, die Klangmuster blieben unverändert. In beiden Gruppen wurden zwei Beispielstimuli S1 mit Lateralisierungswinkeln von 15° bzw. 45° verwendet. Die Probanden mussten sich den Lateralisierungswinkel von S1 merken und anschließend mit einem zweiten Stimulus S2, der nach einer Verzögerungsphase von 800 ms präsentiert wurde, vergleichen. S2 hatte dabei entweder den gleichen Lateralisierungswinkel wie S1, oder unterschied sich darin von dem ersten Stimulus. Nach der Präsentation von S2 mussten die Probanden signalisieren, ob die Lateralisierungswinkel der beiden Stimuli übereinstimmten oder nicht. Die Signale der einzelnen Sensoren wurden mit einem statistischen Wahrscheinlichkeitsmapping untersucht. Dabei wollten wir Unterschiede in der spektralen Amplitude für Stimuli mit 15° bzw. 45° Lateralisierungswinkel identifizieren. Wir konnten spezifische Gamma-Aktivität für alle Beispielstimuli nachweisen. Die Signale wurden im Bereich von 59-72 Hz gefunden und waren über dem parieto-okzipitalen Kortex jeweils kontralateral zur stimulierten Seite lokalisiert. Die maximalen Spektralamplituden dieser Oszillationen traten während der mittleren 200-300 ms der Verzögerungsphase auf und nahmen zu ihrem Ende hin ab. Zusätzlich haben wir Korrelationen zwischen der Aktivierungsstärke der Gamma-Komponenten und dem Abschneiden bei der Gedächtnisaufgabe untersucht. Dabei zeigte sich, dass der Unterschied der oszillatorischen Antworten auf bevorzugte und nicht-bevorzugte Stimuli während der letzten 100 ms der Verzögerungsphase positiv mit der Leistung in der Gedächtnisaufgabe korrelierte. Diese Ergebnisse sprechen dafür, dass die beobachteten Gamma Komponenten die Aktivität neuronaler Netzwerke, die auf die Verarbeitung räumlicher auditorischer Information spezialisiert sind, widerspiegeln. Die Aktivierung dieser Netzwerke scheint zur Aufrechterhaltung aufgabenbezogener Information im Kurzzeitgedächtnis beizutragen

    Flexible recruitment of cortical networks in visual and auditory attention

    Full text link
    Our senses, while limited, shape our perception of the world and contribute to the functional architecture of the brain. This dissertation investigates the role of sensory modality and task demands in the cortical organization of healthy human adults using functional magnetic resonance imaging (fMRI). This research provides evidence for sensory modality bias in frontal cortical regions by directly contrasting auditory and visual sustained attention. This contrast revealed two distinct visual-biased regions in lateral frontal cortex - superior and inferior precentral sulcus (sPCS, iPCS) - anatomically interleaved with two auditory-biased regions - transverse gyrus intersecting precentral sulcus (tgPCS) and caudal inferior frontal sulcus (cIFS). Intrinsic (resting-state) functional connectivity analysis demonstrated that sPCS and iPCS fall within a broad visual-attention network, while tgPCS and cIFS fall within a broad auditory-attention network. Unisensory (auditory or visual) short-term memory (STM) tasks assessed the flexible recruitment of these sensory-biased cortical regions by varying information domain demands (e.g., spatial, temporal). While both modalities provide spatial and temporal information, vision has greater spatial resolution than audition, and audition has excellent temporal precision relative to vision. A visual temporal, but not a spatial, STM task flexibly recruited frontal auditory-biased regions; conversely, an auditory spatial task more strongly recruited frontal visual-biased regions compared to an auditory temporal task. This flexible recruitment extended to an auditory-biased superior temporal lobe region and to a subset of visual-biased parietal regions. A demanding auditory spatial STM task recruited anterior/superior visuotopic maps (IPS2-4, SPL1) along the intraparietal sulcus, but neither spatial nor temporal auditory tasks recruited posterior/interior maps. Finally, a comparison of visual spatial attention and STM under varied cognitive load demands attempted to further elucidate the organization of posterior parietal cortex. Parietal visuotopic maps were recruited for both visual spatial attention and working memory but demonstrated a graded response to task demands. Posterior/inferior maps (IPS0-1) demonstrated a linear relationship with the number of items attended to or remembered in the visual spatial tasks. Anterior/superior maps (IPS2-4, SPL1) demonstrated a general recruitment in visual spatial cognitive tasks, with a stronger response for visual spatial attention compared to STM

    Identifying a brain network for musical rhythm: A functional neuroimaging meta-analysis and systematic review

    Get PDF
    We conducted a systematic review and meta-analysis of 30 functional magnetic resonance imaging studies investigating processing of musical rhythms in neurotypical adults. First, we identified a general network for musical rhythm, encompassing all relevant sensory and motor processes (Beat-based, rest baseline, 12 contrasts) which revealed a large network involving auditory and motor regions. This network included the bilateral superior temporal cortices, supplementary motor area (SMA), putamen, and cerebellum. Second, we identified more precise loci for beat-based musical rhythms (Beat-based, audio-motor control, 8 contrasts) in the bilateral putamen. Third, we identified regions modulated by beat based rhythmic complexity (Complexity, 16 contrasts) which included the bilateral SMA-proper/pre-SMA, cerebellum, inferior parietal regions, and right temporal areas. This meta-analysis suggests that musical rhythm is largely represented in a bilateral cortico-subcortical network. Our findings align with existing theoretical frameworks about auditory-motor coupling to a musical beat and provide a foundation for studying how the neural bases of musical rhythm may overlap with other cognitive domains

    Involvement of the cortico-basal ganglia-thalamocortical loop in developmental stuttering

    Get PDF
    Stuttering is a complex neurodevelopmental disorder that has to date eluded a clear explication of its pathophysiological bases. In this review, we utilize the Directions Into Velocities of Articulators (DIVA) neurocomputational modeling framework to mechanistically interpret relevant findings from the behavioral and neurological literatures on stuttering. Within this theoretical framework, we propose that the primary impairment underlying stuttering behavior is malfunction in the cortico-basal ganglia-thalamocortical (hereafter, cortico-BG) loop that is responsible for initiating speech motor programs. This theoretical perspective predicts three possible loci of impaired neural processing within the cortico-BG loop that could lead to stuttering behaviors: impairment within the basal ganglia proper; impairment of axonal projections between cerebral cortex, basal ganglia, and thalamus; and impairment in cortical processing. These theoretical perspectives are presented in detail, followed by a review of empirical data that make reference to these three possibilities. We also highlight any differences that are present in the literature based on examining adults versus children, which give important insights into potential core deficits associated with stuttering versus compensatory changes that occur in the brain as a result of having stuttered for many years in the case of adults who stutter. We conclude with outstanding questions in the field and promising areas for future studies that have the potential to further advance mechanistic understanding of neural deficits underlying persistent developmental stuttering.R01 DC007683 - NIDCD NIH HHS; R01 DC011277 - NIDCD NIH HHSPublished versio

    High-frequency neural oscillations and visual processing deficits in schizophrenia

    Get PDF
    Visual information is fundamental to how we understand our environment, make predictions, and interact with others. Recent research has underscored the importance of visuo-perceptual dysfunctions for cognitive deficits and pathophysiological processes in schizophrenia. In the current paper, we review evidence for the relevance of high frequency (beta/gamma) oscillations towards visuo-perceptual dysfunctions in schizophrenia. In the first part of the paper, we examine the relationship between beta/gamma band oscillations and visual processing during normal brain functioning. We then summarize EEG/MEG-studies which demonstrate reduced amplitude and synchrony of high-frequency activity during visual stimulation in schizophrenia. In the final part of the paper, we identify neurobiological correlates as well as offer perspectives for future research to stimulate further inquiry into the role of high-frequency oscillations in visual processing impairments in the disorder
    corecore