3,680 research outputs found

    Delays in Open String Field Theory

    Full text link
    We study the dynamics of light-like tachyon condensation in a linear dilaton background using level-truncated open string field theory. The equations of motion are found to be delay differential equations. This observation allows us to employ well-established mathematical methods that we briefly review. At level zero, the equation of motion is of the so-called retarded type and a solution can be found very efficiently, even in the far light-cone future. At levels higher than zero however, the equations are not of the retarded type. We show that this implies the existence of exponentially growing modes in the non-perturbative vacuum, possibly rendering light-like rolling unstable. However, a brute force calculation using exponential series suggests that for the particular initial condition of the tachyon sitting in the false vacuum in the infinite light-cone past, the rolling is unaffected by the unstable modes and still converges to the non-perturbative vacuum, in agreement with the solution of Hellerman and Schnabl. Finally, we show that the growing modes introduce non-locality mixing present with future, and we are led to conjecture that in the infinite level limit, the non-locality in a light-like linear dilaton background is a discrete version of the smearing non-locality found in covariant open string field theory in flat space.Comment: 48 pages, 14 figures. v2: References added; Section 4 augmented by a discussion of the diffusion equation; discussion of growing modes in Section 4 slightly expande

    On a Kelvin-Voigt Viscoelastic Wave Equation with Strong Delay

    Get PDF
    An initial-boundary value problem for a viscoelastic wave equation subject to a strong time-localized delay in a Kelvin & Voigt-type material law is considered. Transforming the equation to an abstract Cauchy problem on the extended phase space, a global well-posedness theory is established using the operator semigroup theory both in Sobolev-valued C0C^{0}- and BV-spaces. Under appropriate assumptions on the coefficients, a global exponential decay rate is obtained and the stability region in the parameter space is further explored using the Lyapunov's indirect method. The singular limit τ→0\tau \to 0 is further studied with the aid of the energy method. Finally, a numerical example from a real-world application in biomechanics is presented.Comment: 34 pages, 4 figures, 1 set of Matlab code

    Numerical test for hyperbolicity of chaotic dynamics in time-delay systems

    Full text link
    We develop a numerical test of hyperbolicity of chaotic dynamics in time-delay systems. The test is based on the angle criterion and includes computation of angle distributions between expanding, contracting and neutral manifolds of trajectories on the attractor. Three examples are tested. For two of them previously predicted hyperbolicity is confirmed. The third one provides an example of a time-delay system with nonhyperbolic chaos.Comment: 7 pages, 5 figure

    A delay differential model of ENSO variability: Parametric instability and the distribution of extremes

    Get PDF
    We consider a delay differential equation (DDE) model for El-Nino Southern Oscillation (ENSO) variability. The model combines two key mechanisms that participate in ENSO dynamics: delayed negative feedback and seasonal forcing. We perform stability analyses of the model in the three-dimensional space of its physically relevant parameters. Our results illustrate the role of these three parameters: strength of seasonal forcing bb, atmosphere-ocean coupling κ\kappa, and propagation period τ\tau of oceanic waves across the Tropical Pacific. Two regimes of variability, stable and unstable, are separated by a sharp neutral curve in the (b,τ)(b,\tau) plane at constant κ\kappa. The detailed structure of the neutral curve becomes very irregular and possibly fractal, while individual trajectories within the unstable region become highly complex and possibly chaotic, as the atmosphere-ocean coupling κ\kappa increases. In the unstable regime, spontaneous transitions occur in the mean ``temperature'' ({\it i.e.}, thermocline depth), period, and extreme annual values, for purely periodic, seasonal forcing. The model reproduces the Devil's bleachers characterizing other ENSO models, such as nonlinear, coupled systems of partial differential equations; some of the features of this behavior have been documented in general circulation models, as well as in observations. We expect, therefore, similar behavior in much more detailed and realistic models, where it is harder to describe its causes as completely.Comment: 22 pages, 9 figure

    Variable-delay feedback control of unstable steady states in retarded time-delayed systems

    Full text link
    We study the stability of unstable steady states in scalar retarded time-delayed systems subjected to a variable-delay feedback control. The important aspect of such a control problem is that time-delayed systems are already infinite-dimensional before the delayed feedback control is turned on. When the frequency of the modulation is large compared to the system's dynamics, the analytic approach consists of relating the stability properties of the resulting variable-delay system with those of an analogous distributed delay system. Otherwise, the stability domains are obtained by a numerical integration of the linearized variable-delay system. The analysis shows that the control domains are significantly larger than those in the usual time-delayed feedback control, and that the complexity of the domain structure depends on the form and the frequency of the delay modulation.Comment: 13 pages, 8 figures, RevTeX, accepted for publication in Physical Review

    On the Result of Invariance of the Closure Set of the Real Projections of the Zeros of an Important Class of Exponential Polynomials

    Get PDF
    In this paper we provide the proof of a practical point-wise characterization of the set RP defined by the closure set of the real projections of the zeros of an exponential polynomial P(z) = Σn j=1 cjewjz with real frequencies wj linearly independent over the rationals. As a consequence, we give a complete description of the set RP and prove its invariance with respect to the moduli of the c′ js, which allows us to determine exactly the gaps of RP and the extremes of the critical interval of P(z) by solving inequations with positive real numbers. Finally, we analyse the converse of this result of invariance.The research was partially supported by Generalitat Valenciana under Project GV/2015/035
    • …
    corecore