34,344 research outputs found

    A decorated tree approach to random permutations in substitution-closed classes

    Get PDF
    We establish a novel bijective encoding that represents permutations as forests of decorated (or enriched) trees. This allows us to prove local convergence of uniform random permutations from substitution-closed classes satisfying a criticality constraint. It also enables us to reprove and strengthen permuton limits for these classes in a new way, that uses a semi-local version of Aldous' skeleton decomposition for size-constrained Galton--Watson trees.Comment: New version including referee's corrections, accepted for publication in Electronic Journal of Probabilit

    Patterns in random permutations avoiding the pattern 132

    Full text link
    We consider a random permutation drawn from the set of 132-avoiding permutations of length nn and show that the number of occurrences of another pattern σ\sigma has a limit distribution, after scaling by nλ(σ)/2n^{\lambda(\sigma)/2} where λ(σ)\lambda(\sigma) is the length of σ\sigma plus the number of descents. The limit is not normal, and can be expressed as a functional of a Brownian excursion. Moments can be found by recursion.Comment: 32 page

    Ramanujan Graphs in Polynomial Time

    Full text link
    The recent work by Marcus, Spielman and Srivastava proves the existence of bipartite Ramanujan (multi)graphs of all degrees and all sizes. However, that paper did not provide a polynomial time algorithm to actually compute such graphs. Here, we provide a polynomial time algorithm to compute certain expected characteristic polynomials related to this construction. This leads to a deterministic polynomial time algorithm to compute bipartite Ramanujan (multi)graphs of all degrees and all sizes

    Random-bit optimal uniform sampling for rooted planar trees with given sequence of degrees and Applications

    Full text link
    In this paper, we redesign and simplify an algorithm due to Remy et al. for the generation of rooted planar trees that satisfies a given partition of degrees. This new version is now optimal in terms of random bit complexity, up to a multiplicative constant. We then apply a natural process "simulate-guess-and-proof" to analyze the height of a random Motzkin in function of its frequency of unary nodes. When the number of unary nodes dominates, we prove some unconventional height phenomenon (i.e. outside the universal square root behaviour.)Comment: 19 page

    Interlacing Families IV: Bipartite Ramanujan Graphs of All Sizes

    Full text link
    We prove that there exist bipartite Ramanujan graphs of every degree and every number of vertices. The proof is based on analyzing the expected characteristic polynomial of a union of random perfect matchings, and involves three ingredients: (1) a formula for the expected characteristic polynomial of the sum of a regular graph with a random permutation of another regular graph, (2) a proof that this expected polynomial is real rooted and that the family of polynomials considered in this sum is an interlacing family, and (3) strong bounds on the roots of the expected characteristic polynomial of a union of random perfect matchings, established using the framework of finite free convolutions we recently introduced

    A simple model of trees for unicellular maps

    Get PDF
    We consider unicellular maps, or polygon gluings, of fixed genus. A few years ago the first author gave a recursive bijection transforming unicellular maps into trees, explaining the presence of Catalan numbers in counting formulas for these objects. In this paper, we give another bijection that explicitly describes the "recursive part" of the first bijection. As a result we obtain a very simple description of unicellular maps as pairs made by a plane tree and a permutation-like structure. All the previously known formulas follow as an immediate corollary or easy exercise, thus giving a bijective proof for each of them, in a unified way. For some of these formulas, this is the first bijective proof, e.g. the Harer-Zagier recurrence formula, the Lehman-Walsh formula and the Goupil-Schaeffer formula. We also discuss several applications of our construction: we obtain a new proof of an identity related to covered maps due to Bernardi and the first author, and thanks to previous work of the second author, we give a new expression for Stanley character polynomials, which evaluate irreducible characters of the symmetric group. Finally, we show that our techniques apply partially to unicellular 3-constellations and to related objects that we call quasi-constellations.Comment: v5: minor revision after reviewers comments, 33 pages, added a refinement by degree of the Harer-Zagier formula and more details in some proof

    On giant components and treewidth in the layers model

    Full text link
    Given an undirected nn-vertex graph G(V,E)G(V,E) and an integer kk, let Tk(G)T_k(G) denote the random vertex induced subgraph of GG generated by ordering VV according to a random permutation π\pi and including in Tk(G)T_k(G) those vertices with at most k−1k-1 of their neighbors preceding them in this order. The distribution of subgraphs sampled in this manner is called the \emph{layers model with parameter} kk. The layers model has found applications in studying ℓ\ell-degenerate subgraphs, the design of algorithms for the maximum independent set problem, and in bootstrap percolation. In the current work we expand the study of structural properties of the layers model. We prove that there are 33-regular graphs GG for which with high probability T3(G)T_3(G) has a connected component of size Ω(n)\Omega(n). Moreover, this connected component has treewidth Ω(n)\Omega(n). This lower bound on the treewidth extends to many other random graph models. In contrast, T2(G)T_2(G) is known to be a forest (hence of treewidth~1), and we establish that if GG is of bounded degree then with high probability the largest connected component in T2(G)T_2(G) is of size O(log⁥n)O(\log n). We also consider the infinite two-dimensional grid, for which we prove that the first four layers contain a unique infinite connected component with probability 11
    • 

    corecore