494 research outputs found

    In-Degree and PageRank of Web pages: Why do they follow similar power laws?

    Get PDF
    The PageRank is a popularity measure designed by Google to rank Web pages. Experiments confirm that the PageRank obeys a `power law' with the same exponent as the In-Degree. This paper presents a novel mathematical model that explains this phenomenon. The relation between the PageRank and In-Degree is modelled through a stochastic equation, which is inspired by the original definition of the PageRank, and is analogous to the well-known distributional identity for the busy period in the M/G/1 queue. Further, we employ the theory of regular variation and Tauberian theorems to analytically prove that the tail behavior of the PageRank and the In-Degree differ only by a multiplicative factor, for which we derive a closed-form expression. Our analytical results are in good agreement with experimental data.Comment: 20 pages, 3 figures; typos added; reference adde

    In-Degree and PageRank of web pages: why do they follow similar power laws?

    Get PDF
    PageRank is a popularity measure designed by Google to rank Web pages. Experiments confirm that PageRank values obey a power law with the same exponent as In-Degree values. This paper presents a novel mathematical model that explains this phenomenon. The relation between PageRank and In-Degree is modelled through a stochastic equation, which is inspired by the original definition of PageRank, and is analogous to the well-known distributional identity for the busy period in the M/G/1M/G/1 queue. Further, we employ the theory of regular variation and Tauberian theorems to analytically prove that the tail distributions of PageRank and In-Degree differ only by a multiple factor, for which we derive a closed-form expression. Our analytical results are in good agreement with experimental data

    Determining factors behind the PageRank log-log plot

    Get PDF
    We study the relation between PageRank and other parameters of information networks such as in-degree, out-degree, and the fraction of dangling nodes. We model this relation through a stochastic equation inspired by the original definition of PageRank. Further, we use the theory of regular variation to prove that PageRank and in-degree follow power laws with the same exponent. The difference between these two power laws is in a multiple coefficient, which depends mainly on the fraction of dangling nodes, average in-degree, the power law exponent, and damping factor. The out-degree distribution has a minor effect, which we explicitly quantify. Our theoretical predictions show a good agreement with experimental data on three different samples of the Web

    Asymptotic analysis for personalized Web search

    Get PDF
    Personalized PageRank is used in Web search as an importance measure for Web documents. The goal of this paper is to characterize the tail behavior of the PageRank distribution in the Web and other complex networks characterized by power laws. To this end, we model the PageRank as a solution of a stochastic equation R=di=1NAiRi+BR\stackrel{d}{=}\sum_{i=1}^NA_iR_i+B, where RiR_i's are distributed as RR. This equation is inspired by the original definition of the PageRank. In particular, NN models the number of incoming links of a page, and BB stays for the user preference. Assuming that NN or BB are heavy-tailed, we employ the theory of regular variation to obtain the asymptotic behavior of RR under quite general assumptions on the involved random variables. Our theoretical predictions show a good agreement with experimental data

    Ranking Spaces for Predicting Human Movement in an Urban Environment

    Full text link
    A city can be topologically represented as a connectivity graph, consisting of nodes representing individual spaces and links if the corresponding spaces are intersected. It turns out in the space syntax literature that some defined topological metrics can capture human movement rates in individual spaces. In other words, the topological metrics are significantly correlated to human movement rates, and individual spaces can be ranked by the metrics for predicting human movement. However, this correlation has never been well justified. In this paper, we study the same issue by applying the weighted PageRank algorithm to the connectivity graph or space-space topology for ranking the individual spaces, and find surprisingly that (1) the PageRank scores are better correlated to human movement rates than the space syntax metrics, and (2) the underlying space-space topology demonstrates small world and scale free properties. The findings provide a novel justification as to why space syntax, or topological analysis in general, can be used to predict human movement. We further conjecture that this kind of analysis is no more than predicting a drunkard's walking on a small world and scale free network. Keywords: Space syntax, topological analysis of networks, small world, scale free, human movement, and PageRankComment: 11 pages, 5 figures, and 2 tables, English corrections from version 1 to version 2, major changes in the section of introduction from version 2 to

    Quantum Google in a Complex Network

    Get PDF
    We investigate the behavior of the recently proposed quantum Google algorithm, or quantum PageRank, in large complex networks. Applying the quantum algorithm to a part of the real World Wide Web, we find that the algorithm is able to univocally reveal the underlying scale-free topology of the network and to clearly identify and order the most relevant nodes (hubs) of the graph according to their importance in the network structure. Moreover, our results show that the quantum PageRank algorithm generically leads to changes in the hierarchy of nodes. In addition, as compared to its classical counterpart, the quantum algorithm is capable to clearly highlight the structure of secondary hubs of the network, and to partially resolve the degeneracy in importance of the low lying part of the list of rankings, which represents a typical shortcoming of the classical PageRank algorithm. Complementary to this study, our analysis shows that the algorithm is able to clearly distinguish scale-free networks from other widespread and important classes of complex networks, such as Erd\H{o}s-R\'enyi networks and hierarchical graphs. We show that the ranking capabilities of the quantum PageRank algorithm are related to an increased stability with respect to a variation of the damping parameter α\alpha that appears in the Google algorithm, and to a more clearly pronounced power-law behavior in the distribution of importance among the nodes, as compared to the classical algorithm. Finally, we study to which extent the increased sensitivity of the quantum algorithm persists under coordinated attacks of the most important nodes in scale-free and Erd\H{o}s-R\'enyi random graphs

    A framework for evaluating statistical dependencies and rank correlations in power law graphs

    Get PDF
    We analyze dependencies in power law graph data (Web sample, Wikipedia sample and a preferential attachment graph) using statistical inference for multivariate regular variation. To the best of our knowledge, this is the first attempt to apply the well developed theory of regular variation to graph data. The new insights this yields are striking: the three above-mentioned data sets are shown to have a totally different dependence structure between different graph parameters, such as in-degree and PageRank. Based on the proposed methodology, we suggest a new measure for rank correlations. Unlike most known methods, this measure is especially sensitive to rank permutations for topranked nodes. Using this method, we demonstrate that the PageRank ranking is not sensitive to moderate changes in the damping factor
    corecore