765 research outputs found

    Volumetric Untrimming: Precise decomposition of trimmed trivariates into tensor products

    Full text link
    3D objects, modeled using Computer Aided Geometric Design tools, are traditionally represented using a boundary representation (B-rep), and typically use spline functions to parameterize these boundary surfaces. However, recent development in physical analysis, in isogeometric analysis (IGA) in specific, necessitates a volumetric parametrization of the interior of the object. IGA is performed directly by integrating over the spline spaces of the volumetric spline representation of the object. Typically, tensor-product B-spline trivariates are used to parameterize the volumetric domain. A general 3D object, that can be modeled in contemporary B-rep CAD tools, is typically represented using trimmed B-spline surfaces. In order to capture the generality of the contemporary B-rep modeling space, while supporting IGA needs, Massarwi and Elber (2016) proposed the use of trimmed trivariates volumetric elements. However, the use of trimmed geometry makes the integration process more difficult since integration over trimmed B-spline basis functions is a highly challenging task. In this work, we propose an algorithm that precisely decomposes a trimmed B-spline trivariate into a set of (singular only on the boundary) tensor-product B-spline trivariates, that can be utilized to simplify the integration process in IGA. The trimmed B-spline trivariate is first subdivided into a set of trimmed B\'ezier trivariates, at all its internal knots. Then, each trimmed B\'ezier trivariate, is decomposed into a set of mutually exclusive tensor-product B-spline trivariates, that precisely cover the entire trimmed domain. This process, denoted untrimming, can be performed in either the Euclidean space or the parametric space of the trivariate. We present examples on complex trimmed trivariates' based geometry, and we demonstrate the effectiveness of the method by applying IGA over the (untrimmed) results.Comment: 18 pages, 32 figures. Contribution accepted in International Conference on Geometric Modeling and Processing (GMP 2019

    Discrete curvature approximations and segmentation of polyhedral surfaces

    Get PDF
    The segmentation of digitized data to divide a free form surface into patches is one of the key steps required to perform a reverse engineering process of an object. To this end, discrete curvature approximations are introduced as the basis of a segmentation process that lead to a decomposition of digitized data into areas that will help the construction of parametric surface patches. The approach proposed relies on the use of a polyhedral representation of the object built from the digitized data input. Then, it is shown how noise reduction, edge swapping techniques and adapted remeshing schemes can participate to different preparation phases to provide a geometry that highlights useful characteristics for the segmentation process. The segmentation process is performed with various approximations of discrete curvatures evaluated on the polyhedron produced during the preparation phases. The segmentation process proposed involves two phases: the identification of characteristic polygonal lines and the identification of polyhedral areas useful for a patch construction process. Discrete curvature criteria are adapted to each phase and the concept of invariant evaluation of curvatures is introduced to generate criteria that are constant over equivalent meshes. A description of the segmentation procedure is provided together with examples of results for free form object surfaces

    Projective duals to algebraic and tropical hypersurfaces

    Get PDF
    We study a tropical analogue of the projective dual variety of a hypersurface. When XX is a curve in P2\mathbb{P}^2 or a surface in P3\mathbb{P}^3, we provide an explicit description of Trop(X∗)\text{Trop}(X^*) in terms of Trop(X)\text{Trop}(X), as long as Trop(X)\text{Trop}(X) is smooth and satisfies a mild genericity condition. As a consequence, when XX is a curve we describe the transformation of Newton polygons under projective duality, and recover classical formulas for the degree of a dual plane curve. For higher dimensional hypersurfaces XX, we give a partial description of Trop(X∗)\text{Trop}(X^*).Comment: 47 pages, 13 figures; v2 minor revisions; accepted to PLM

    Subdivision surface fitting to a dense mesh using ridges and umbilics

    Get PDF
    Fitting a sparse surface to approximate vast dense data is of interest for many applications: reverse engineering, recognition and compression, etc. The present work provides an approach to fit a Loop subdivision surface to a dense triangular mesh of arbitrary topology, whilst preserving and aligning the original features. The natural ridge-joined connectivity of umbilics and ridge-crossings is used as the connectivity of the control mesh for subdivision, so that the edges follow salient features on the surface. Furthermore, the chosen features and connectivity characterise the overall shape of the original mesh, since ridges capture extreme principal curvatures and ridges start and end at umbilics. A metric of Hausdorff distance including curvature vectors is proposed and implemented in a distance transform algorithm to construct the connectivity. Ridge-colour matching is introduced as a criterion for edge flipping to improve feature alignment. Several examples are provided to demonstrate the feature-preserving capability of the proposed approach
    • …
    corecore