5,055 research outputs found

    Fast Mojette Transform for Discrete Tomography

    Full text link
    A new algorithm for reconstructing a two dimensional object from a set of one dimensional projected views is presented that is both computationally exact and experimentally practical. The algorithm has a computational complexity of O(n log2 n) with n = N^2 for an NxN image, is robust in the presence of noise and produces no artefacts in the reconstruction process, as is the case with conventional tomographic methods. The reconstruction process is approximation free because the object is assumed to be discrete and utilizes fully discrete Radon transforms. Noise in the projection data can be suppressed further by introducing redundancy in the reconstruction. The number of projections required for exact reconstruction and the response to noise can be controlled without comprising the digital nature of the algorithm. The digital projections are those of the Mojette Transform, a form of discrete linogram. A simple analytical mapping is developed that compacts these projections exactly into symmetric periodic slices within the Discrete Fourier Transform. A new digital angle set is constructed that allows the periodic slices to completely fill all of the objects Discrete Fourier space. Techniques are proposed to acquire these digital projections experimentally to enable fast and robust two dimensional reconstructions.Comment: 22 pages, 13 figures, Submitted to Elsevier Signal Processin

    On Radon transforms on finite groups

    Full text link
    If GG is a finite group, is a function f:G→Cf:G\to\mathbb C determined by its sums over all cosets of cyclic subgroups of GG? In other words, is the Radon transform on GG injective? This inverse problem is a discrete analogue of asking whether a function on a compact Lie group is determined by its integrals over all geodesics. We discuss what makes this new discrete inverse problem analogous to well-studied inverse problems on manifolds and we also present some alternative definitions. We use representation theory to prove that the Radon transform fails to be injective precisely on Frobenius complements. We also give easy-to-check sufficient conditions for injectivity and noninjectivity for the Radon transform, including a complete answer for abelian groups and several examples for nonabelian ones.Comment: 23 page

    The Discrete radon transform: A more efficient approach to image reconstruction

    Get PDF
    The Radon transform and its inversion are the mathematical keys that enable tomography. Radon transforms are defined for continuous objects with continuous projections at all angles in [0,Ď€). In practice, however, we pre-filter discrete projections take

    Fast algorithms and efficient GPU implementations for the Radon transform and the back-projection operator represented as convolution operators

    Full text link
    The Radon transform and its adjoint, the back-projection operator, can both be expressed as convolutions in log-polar coordinates. Hence, fast algorithms for the application of the operators can be constructed by using FFT, if data is resampled at log-polar coordinates. Radon data is typically measured on an equally spaced grid in polar coordinates, and reconstructions are represented (as images) in Cartesian coordinates. Therefore, in addition to FFT, several steps of interpolation have to be conducted in order to apply the Radon transform and the back-projection operator by means of convolutions. Both the interpolation and the FFT operations can be efficiently implemented on Graphical Processor Units (GPUs). For the interpolation, it is possible to make use of the fact that linear interpolation is hard-wired on GPUs, meaning that it has the same computational cost as direct memory access. Cubic order interpolation schemes can be constructed by combining linear interpolation steps which provides important computation speedup. We provide details about how the Radon transform and the back-projection can be implemented efficiently as convolution operators on GPUs. For large data sizes, speedups of about 10 times are obtained in relation to the computational times of other software packages based on GPU implementations of the Radon transform and the back-projection operator. Moreover, speedups of more than a 1000 times are obtained against the CPU-implementations provided in the MATLAB image processing toolbox

    On Radon transforms on tori

    Full text link
    We show injectivity of the X-ray transform and the dd-plane Radon transform for distributions on the nn-torus, lowering the regularity assumption in the recent work by Abouelaz and Rouvi\`ere. We also show solenoidal injectivity of the X-ray transform on the nn-torus for tensor fields of any order, allowing the tensors to have distribution valued coefficients. These imply new injectivity results for the periodic broken ray transform on cubes of any dimension.Comment: 13 page

    Quantum Fourier transform, Heisenberg groups and quasiprobability distributions

    Full text link
    This paper aims to explore the inherent connection among Heisenberg groups, quantum Fourier transform and (quasiprobability) distribution functions. Distribution functions for continuous and finite quantum systems are examined first as a semiclassical approach to quantum probability distribution. This leads to studying certain functionals of a pair of "conjugate" observables, connected via the quantum Fourier transform. The Heisenberg groups emerge naturally from this study and we take a rapid look at their representations. The quantum Fourier transform appears as the intertwining operator of two equivalent representation arising out of an automorphism of the group. Distribution functions correspond to certain distinguished sets in the group algebra. The marginal properties of a particular class of distribution functions (Wigner distributions) arise from a class of automorphisms of the group algebra of the Heisenberg group. We then study the reconstruction of Wigner function from the marginal distributions via inverse Radon transform giving explicit formulas. We consider applications of our approach to quantum information processing and quantum process tomography.Comment: 39 page
    • …
    corecore