27,512 research outputs found

    SU(2) and SU(1,1) Approaches to Phase Operators and Temporally Stable Phase States: Applications to Mutually Unbiased Bases and Discrete Fourier Transforms

    Full text link
    We propose a group-theoretical approach to the generalized oscillator algebra Ak recently investigated in J. Phys. A: Math. Theor. 43 (2010) 115303. The case k > or 0 corresponds to the noncompact group SU(1,1) (as for the harmonic oscillator and the Poeschl-Teller systems) while the case k < 0 is described by the compact group SU(2) (as for the Morse system). We construct the phase operators and the corresponding temporally stable phase eigenstates for Ak in this group-theoretical context. The SU(2) case is exploited for deriving families of mutually unbiased bases used in quantum information. Along this vein, we examine some characteristics of a quadratic discrete Fourier transform in connection with generalized quadratic Gauss sums and generalized Hadamard matrices

    Log-correlated Gaussian fields: an overview

    Get PDF
    We survey the properties of the log-correlated Gaussian field (LGF), which is a centered Gaussian random distribution (generalized function) hh on Rd\mathbb R^d, defined up to a global additive constant. Its law is determined by the covariance formula Cov[(h,ϕ1),(h,ϕ2)]=Rd×Rdlogyzϕ1(y)ϕ2(z)dydz\mathrm{Cov}\bigl[ (h, \phi_1), (h, \phi_2) \bigr] = \int_{\mathbb R^d \times \mathbb R^d} -\log|y-z| \phi_1(y) \phi_2(z)dydz which holds for mean-zero test functions ϕ1,ϕ2\phi_1, \phi_2. The LGF belongs to the larger family of fractional Gaussian fields obtained by applying fractional powers of the Laplacian to a white noise WW on Rd\mathbb R^d. It takes the form h=(Δ)d/4Wh = (-\Delta)^{-d/4} W. By comparison, the Gaussian free field (GFF) takes the form (Δ)1/2W(-\Delta)^{-1/2} W in any dimension. The LGFs with d{2,1}d \in \{2,1\} coincide with the 2D GFF and its restriction to a line. These objects arise in the study of conformal field theory and SLE, random surfaces, random matrices, Liouville quantum gravity, and (when d=1d=1) finance. Higher dimensional LGFs appear in models of turbulence and early-universe cosmology. LGFs are closely related to cascade models and Gaussian branching random walks. We review LGF approximation schemes, restriction properties, Markov properties, conformal symmetries, and multiplicative chaos applications.Comment: 24 pages, 2 figure
    corecore