23,200 research outputs found

    The fractional p-Laplacian emerging from homogenization of the random conductance model with degenerate ergodic weights and unbounded-range jumps

    Get PDF
    We study a general class of discrete pp-Laplace operators in the random conductance model with long-range jumps and ergodic weights. Using a variational formulation of the problem, we show that under the assumption of bounded first moments and a suitable lower moment condition on the weights, the homogenized limit operator is a fractional pp-Laplace operator. Under strengthened lower moment conditions, we can apply our insights also to the spectral homogenization of the discrete Laplace operator to the continuous fractional Laplace operator

    The fractional p-Laplacian emerging from homogenization of the random conductance model with degenerate ergodic weights and unbounded-range jumps

    Get PDF
    We study a general class of discrete p-Laplace operators in the random conductance model with long-range jumps and ergodic weights. Using a variational formulation of the problem, we show that under the assumption of bounded first moments and a suitable lower moment condition on the weights, the homogenized limit operator is a fractional p-Laplace operator. Under strengthened lower moment conditions, we can apply our insights also to the spectral homogenization of the discrete Lapalace operator to the continuous fractional Laplace operator

    Anderson localization for a class of models with a sign-indefinite single-site potential via fractional moment method

    Full text link
    A technically convenient signature of Anderson localization is exponential decay of the fractional moments of the Green function within appropriate energy ranges. We consider a random Hamiltonian on a lattice whose randomness is generated by the sign-indefinite single-site potential, which is however sign-definite at the boundary of its support. For this class of Anderson operators we establish a finite-volume criterion which implies that above mentioned the fractional moment decay property holds. This constructive criterion is satisfied at typical perturbative regimes, e. g. at spectral boundaries which satisfy 'Lifshitz tail estimates' on the density of states and for sufficiently strong disorder. We also show how the fractional moment method facilitates the proof of exponential (spectral) localization for such random potentials.Comment: 29 pages, 1 figure, to appear in AH

    Linear Relaxation Processes Governed by Fractional Symmetric Kinetic Equations

    Full text link
    We get fractional symmetric Fokker - Planck and Einstein - Smoluchowski kinetic equations, which describe evolution of the systems influenced by stochastic forces distributed with stable probability laws. These equations generalize known kinetic equations of the Brownian motion theory and contain symmetric fractional derivatives over velocity and space, respectively. With the help of these equations we study analytically the processes of linear relaxation in a force - free case and for linear oscillator. For a weakly damped oscillator we also get kinetic equation for the distribution in slow variables. Linear relaxation processes are also studied numerically by solving corresponding Langevin equations with the source which is a discrete - time approximation to a white Levy noise. Numerical and analytical results agree quantitatively.Comment: 30 pages, LaTeX, 13 figures PostScrip

    Evidence of Intermittent Cascades from Discrete Hierarchical Dissipation in Turbulence

    Full text link
    We present the results of a search of log-periodic corrections to scaling in the moments of the energy dissipation rate in experiments at high Reynolds number (2500) of three-dimensional fully developed turbulence. A simple dynamical representation of the Richardson-Kolmogorov cartoon of a cascade shows that standard averaging techniques erase by their very construction the possible existence of log-periodic corrections to scaling associated with a discrete hierarchy. To remedy this drawback, we introduce a novel ``canonical'' averaging that we test extensively on synthetic examples constructed to mimick the interplay between a weak log-periodic component and rather strong multiplicative and phase noises. Our extensive tests confirm the remarkable observation of statistically significant log-periodic corrections to scaling, with a prefered scaling ratio for length scales compatible with the value gamma = 2. A strong confirmation of this result is provided by the identification of up to 5 harmonics of the fundamental log-periodic undulations, associated with up to 5 levels of the underlying hierarchical dynamical structure. A natural interpretation of our results is that the Richardson-Kolmogorov mental picture of a cascade becomes a realistic description if one allows for intermittent births and deaths of discrete cascades at varying scales.Comment: Latex document of 40 pages, including 18 eps figure

    Fractional Kinetics for Relaxation and Superdiffusion in Magnetic Field

    Get PDF
    We propose fractional Fokker-Planck equation for the kinetic description of relaxation and superdiffusion processes in constant magnetic and random electric fields. We assume that the random electric field acting on a test charged particle is isotropic and possesses non-Gaussian Levy stable statistics. These assumptions provide us with a straightforward possibility to consider formation of anomalous stationary states and superdiffusion processes, both properties are inherent to strongly non-equilibrium plasmas of solar systems and thermonuclear devices. We solve fractional kinetic equations, study the properties of the solution, and compare analytical results with those of numerical simulation based on the solution of the Langevin equations with the noise source having Levy stable probability density. We found, in particular, that the stationary states are essentially non-Maxwellian ones and, at the diffusion stage of relaxation, the characteristic displacement of a particle grows superdiffusively with time and is inversely proportional to the magnetic field.Comment: 15 pages, LaTeX, 5 figures PostScrip
    • …
    corecore