25,061 research outputs found

    The discrete dynamics of nonlinear infinite-delay-differential equations

    Get PDF
    AbstractThis paper deals with numerical stability of nonlinear infinite-delay systems of the form y′(t) = ƒ(t,y(t),y(pt)) (p ∈ (0, 1), t > 0). Recently, linear stability properties of some numerical methods for infinite delay systems have been studied by several authors (cf. [1–9]). However, few results have been devoted to the nonlinear case. This paper considers global and asymptotic stability of one-leg θ-methods for the above nonlinear systems. Some stability criteria are obtained

    Random differential equations with discrete delay

    Full text link
    [EN] In this article, we study random differential equations with discrete delay with initial condition The uncertainty in the problem is reflected via the outcome omega. The initial condition g(t) is a stochastic process. The term x(t) is a stochastic process that solves the random differential equation with delay in a probabilistic sense. In our case, we use the random calculus approach. We extend the classical Picard theorem for deterministic ordinary differential equations to calculus for random differential equations with delay, via Banach fixed-point theorem. We also relate solutions with sample-path solutions. Finally, we utilize the theoretical ideas to solve the random autonomous linear differential equation with discrete delay.This work has been supported by the Spanish Ministerio de Economía y Competitividad grant MTM2017 89664 PCalatayud-Gregori, J.; Cortés, J.; Jornet-Sanz, M. (2019). Random differential equations with discrete delay. Stochastic Analysis and Applications. 37(5):699-707. https://doi.org/10.1080/07362994.2019.1608833S699707375Fridman, E., & Shaikhet, L. (2017). Stabilization by using artificial delays: An LMI approach. Automatica, 81, 429-437. doi:10.1016/j.automatica.2017.04.015Shaikhet, L., & Korobeinikov, A. (2015). Stability of a stochastic model for HIV-1 dynamics within a host. Applicable Analysis, 95(6), 1228-1238. doi:10.1080/00036811.2015.1058363Caraballo, T., Colucci, R., & Guerrini, L. (2018). On a predator prey model with nonlinear harvesting and distributed delay. Communications on Pure & Applied Analysis, 17(6), 2703-2727. doi:10.3934/cpaa.2018128Caraballo, T., J. Garrido-Atienza, M., Schmalfuss, B., & Valero, J. (2017). Attractors for a random evolution equation with infinite memory: Theoretical results. Discrete & Continuous Dynamical Systems - B, 22(5), 1779-1800. doi:10.3934/dcdsb.2017106Krapivsky, P. L., Luck, J. M., & Mallick, K. (2011). On stochastic differential equations with random delay. Journal of Statistical Mechanics: Theory and Experiment, 2011(10), P10008. doi:10.1088/1742-5468/2011/10/p10008Liu, S., Debbouche, A., & Wang, J. (2017). On the iterative learning control for stochastic impulsive differential equations with randomly varying trial lengths. Journal of Computational and Applied Mathematics, 312, 47-57. doi:10.1016/j.cam.2015.10.028Dorini, F. A., Cecconello, M. S., & Dorini, L. B. (2016). On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Communications in Nonlinear Science and Numerical Simulation, 33, 160-173. doi:10.1016/j.cnsns.2015.09.009Slama, H., El-Bedwhey, N. A., El-Depsy, A., & Selim, M. M. (2017). Solution of the finite Milne problem in stochastic media with RVT Technique. The European Physical Journal Plus, 132(12). doi:10.1140/epjp/i2017-11763-6Nouri, K., Ranjbar, H., & Torkzadeh, L. (2019). Modified stochastic theta methods by ODEs solvers for stochastic differential equations. Communications in Nonlinear Science and Numerical Simulation, 68, 336-346. doi:10.1016/j.cnsns.2018.08.013Lupulescu, V., O’Regan, D., & ur Rahman, G. (2014). Existence results for random fractional differential equations. Opuscula Mathematica, 34(4), 813. doi:10.7494/opmath.2014.34.4.813Strand, J. . (1970). Random ordinary differential equations. Journal of Differential Equations, 7(3), 538-553. doi:10.1016/0022-0396(70)90100-2Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061Granas, A., & Dugundji, J. (2003). Fixed Point Theory. Springer Monographs in Mathematics. doi:10.1007/978-0-387-21593-

    Lp-solution to the random linear delay differential equation with stochastic forcing term

    Full text link
    [EN] This paper aims at extending a previous contribution dealing with the random autonomous-homogeneous linear differential equation with discrete delay tau > 0, by adding a random forcing term f(t) that varies with time: x'(t) = ax(t) + bx(t-tau) + f(t), t >= 0, with initial condition x(t) = g(t), -tau <= t <= 0. The coefficients a and b are assumed to be random variables, while the forcing term f(t) and the initial condition g(t) are stochastic processes on their respective time domains. The equation is regarded in the Lebesgue space L-p of random variables with finite p-th moment. The deterministic solution constructed with the method of steps and the method of variation of constants, which involves the delayed exponential function, is proved to be an L-p-solution, under certain assumptions on the random data. This proof requires the extension of the deterministic Leibniz's integral rule for differentiation to the random scenario. Finally, we also prove that, when the delay tau tends to 0, the random delay equation tends in L-p to a random equation with no delay. Numerical experiments illustrate how our methodology permits determining the main statistics of the solution process, thereby allowing for uncertainty quantification.This work has been supported by the Spanish Ministerio de Economia, Industria y Competitividad (MINECO), the Agencia Estatal de Investigacion (AEI) and Fondo Europeo de Desarrollo Regional (FEDER UE) grant MTM2017-89664-P.Cortés, J.; Jornet, M. (2020). Lp-solution to the random linear delay differential equation with stochastic forcing term. Mathematics. 8(6):1-16. https://doi.org/10.3390/math8061013S11686Xiu, D., & Karniadakis, G. E. (2004). Supersensitivity due to uncertain boundary conditions. International Journal for Numerical Methods in Engineering, 61(12), 2114-2138. doi:10.1002/nme.1152Casabán, M.-C., Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., Roselló, M.-D., & Villanueva, R.-J. (2016). A comprehensive probabilistic solution of random SIS-type epidemiological models using the random variable transformation technique. Communications in Nonlinear Science and Numerical Simulation, 32, 199-210. doi:10.1016/j.cnsns.2015.08.009Strand, J. . (1970). Random ordinary differential equations. Journal of Differential Equations, 7(3), 538-553. doi:10.1016/0022-0396(70)90100-2Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061Cortés, J.-C., Jódar, L., Roselló, M.-D., & Villafuerte, L. (2012). Solving initial and two-point boundary value linear random differential equations: A mean square approach. Applied Mathematics and Computation, 219(4), 2204-2211. doi:10.1016/j.amc.2012.08.066Calatayud, J., Cortés, J.-C., Jornet, M., & Villafuerte, L. (2018). Random non-autonomous second order linear differential equations: mean square analytic solutions and their statistical properties. Advances in Difference Equations, 2018(1). doi:10.1186/s13662-018-1848-8Calatayud, J., Cortés, J.-C., & Jornet, M. (2019). Improving the Approximation of the First- and Second-Order Statistics of the Response Stochastic Process to the Random Legendre Differential Equation. Mediterranean Journal of Mathematics, 16(3). doi:10.1007/s00009-019-1338-6Licea, J. A., Villafuerte, L., & Chen-Charpentier, B. M. (2013). Analytic and numerical solutions of a Riccati differential equation with random coefficients. Journal of Computational and Applied Mathematics, 239, 208-219. doi:10.1016/j.cam.2012.09.040Burgos, C., Calatayud, J., Cortés, J.-C., & Villafuerte, L. (2018). Solving a class of random non-autonomous linear fractional differential equations by means of a generalized mean square convergent power series. Applied Mathematics Letters, 78, 95-104. doi:10.1016/j.aml.2017.11.009Nouri, K., & Ranjbar, H. (2014). Mean Square Convergence of the Numerical Solution of Random Differential Equations. Mediterranean Journal of Mathematics, 12(3), 1123-1140. doi:10.1007/s00009-014-0452-8Calatayud, J., Cortés, J.-C., & Jornet, M. (2019). Random differential equations with discrete delay. Stochastic Analysis and Applications, 37(5), 699-707. doi:10.1080/07362994.2019.1608833Calatayud, J., Cortés, J.-C., & Jornet, M. (2019). Lp\mathrm {L}^p-calculus Approach to the Random Autonomous Linear Differential Equation with Discrete Delay. Mediterranean Journal of Mathematics, 16(4). doi:10.1007/s00009-019-1370-6Caraballo, T., Cortés, J.-C., & Navarro-Quiles, A. (2019). Applying the random variable transformation method to solve a class of random linear differential equation with discrete delay. Applied Mathematics and Computation, 356, 198-218. doi:10.1016/j.amc.2019.03.048Zhou, T. (2014). A Stochastic Collocation Method for Delay Differential Equations with Random Input. Advances in Applied Mathematics and Mechanics, 6(4), 403-418. doi:10.4208/aamm.2012.m38Shi, W., & Zhang, C. (2017). Generalized polynomial chaos for nonlinear random delay differential equations. Applied Numerical Mathematics, 115, 16-31. doi:10.1016/j.apnum.2016.12.004Khusainov, D. Y., Ivanov, A. F., & Kovarzh, I. V. (2009). Solution of one heat equation with delay. Nonlinear Oscillations, 12(2), 260-282. doi:10.1007/s11072-009-0075-3Shaikhet, L. (2016). Stability of equilibrium states of a nonlinear delay differential equation with stochastic perturbations. International Journal of Robust and Nonlinear Control, 27(6), 915-924. doi:10.1002/rnc.3605Benhadri, M., & Zeghdoudi, H. (2018). Mean square asymptotic stability in nonlinear stochastic neutral Volterra-Levin equations with Poisson jumps and variable delays. Functiones et Approximatio Commentarii Mathematici, 58(2). doi:10.7169/facm/1657Santonja, F.-J., & Shaikhet, L. (2012). Analysing Social Epidemics by Delayed Stochastic Models. Discrete Dynamics in Nature and Society, 2012, 1-13. doi:10.1155/2012/530472Liu, L., & Caraballo, T. (2018). Analysis of a Stochastic 2D-Navier–Stokes Model with Infinite Delay. Journal of Dynamics and Differential Equations, 31(4), 2249-2274. doi:10.1007/s10884-018-9703-xLupulescu, V., & Abbas, U. (2011). Fuzzy delay differential equations. Fuzzy Optimization and Decision Making, 11(1), 99-111. doi:10.1007/s10700-011-9112-7Krapivsky, P. L., Luck, J. M., & Mallick, K. (2011). On stochastic differential equations with random delay. Journal of Statistical Mechanics: Theory and Experiment, 2011(10), P10008. doi:10.1088/1742-5468/2011/10/p10008GARRIDO-ATIENZA, M. J., OGROWSKY, A., & SCHMALFUSS, B. (2011). RANDOM DIFFERENTIAL EQUATIONS WITH RANDOM DELAYS. Stochastics and Dynamics, 11(02n03), 369-388. doi:10.1142/s0219493711003358Cortés, J.-C., Villafuerte, L., & Burgos, C. (2017). A Mean Square Chain Rule and its Application in Solving the Random Chebyshev Differential Equation. Mediterranean Journal of Mathematics, 14(1). doi:10.1007/s00009-017-0853-6Cortés, J. C., Jódar, L., & Villafuerte, L. (2007). Numerical solution of random differential equations: A mean square approach. Mathematical and Computer Modelling, 45(7-8), 757-765. doi:10.1016/j.mcm.2006.07.017Braumann, C. A., Cortés, J.-C., Jódar, L., & Villafuerte, L. (2018). On the random gamma function: Theory and computing. Journal of Computational and Applied Mathematics, 335, 142-155. doi:10.1016/j.cam.2017.11.045Khusainov, D. Y., & Pokojovy, M. (2015). Solving the Linear 1D Thermoelasticity Equations with Pure Delay. International Journal of Mathematics and Mathematical Sciences, 2015, 1-11. doi:10.1155/2015/47926

    Lp-calculus approach to the random autonomous linear differential equation with discrete delay

    Full text link
    [EN] In this paper, we provide a full probabilistic study of the random autonomous linear differential equation with discrete delay , with initial condition x(t)=g(t), -t0. The coefficients a and b are assumed to be random variables, while the initial condition g(t) is taken as a stochastic process. Using Lp-calculus, we prove that, under certain conditions, the deterministic solution constructed with the method of steps that involves the delayed exponential function is an Lp-solution too. An analysis of Lp-convergence when the delay tends to 0 is also performed in detail.This work has been supported by the Spanish Ministerio de Economia y Competitividad Grant MTM2017-89664-P. The author Marc Jornet acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigacion y Desarrollo (PAID), Universitat Politecnica de Valencia.Calatayud-Gregori, J.; Cortés, J.; Jornet-Sanz, M. (2019). Lp-calculus approach to the random autonomous linear differential equation with discrete delay. Mediterranean Journal of Mathematics. 16(4):1-17. https://doi.org/10.1007/s00009-019-1370-6S117164Smith, H.: An Introduction to Delay Differential Equations with Applications to the Life Sciences, Texts in Applied Mathematics. Springer, New York (2011)Driver, Y.: Ordinary and Delay Differential Equations. Applied Mathematical Science Series. Springer, New York (1977)Kuang, Y.: Delay Differential Equations: with Applications in Population Dynamics. Academic Press, Cambridge (2012)Bocharov, G.A., Rihan, F.A.: Numerical modelling in biosciences using delay differential equations. J. Comput. Appl. Math. 125, 183–199 (2000). https://doi.org/10.1016/S0377-0427(00)00468-4Jackson, M., Chen-Charpentier, B.M.: Modeling plant virus propagation with delays. J. Comput. Appl. Math. 309, 611–621 (2017). https://doi.org/10.1016/j.cam.2016.04.024Chen-Charpentier, B.M., Diakite, I.: A mathematical model of bone remodeling with delays. J. Comput. Appl. Math. 291, 76–84 (2016). https://doi.org/10.1016/j.cam.2017.01.005Erneux, T.: Applied Delay Differential Equations, Surveys and Tutorials in the Applied Mathematical Sciences Series. Springer, New York (2009)Kyrychko, Y.N., Hogan, S.J.: On the Use of delay equations in engineering applications. J. Vib. Control 16(7–8), 943–960 (2017). https://doi.org/10.1177/1077546309341100Matsumoto, A., Szidarovszky, F.: Delay Differential Nonlinear Economic Models (in Nonlinear Dynamics in Economics, Finance and the Social Sciences), 195–214. Springer-Verlag, Berlin Heidelberg (2010)Harding, L., Neamtu, M.: A dynamic model of unemployment with migration and delayed policy intervention. Comput. Econ. 51(3), 427–462 (2018). https://doi.org/10.1007/s10614-016-9610-3Oksendal, B.: Stochastic Differential Equations. Springer, New York (1998)Shaikhet, L.: Lyapunov Functionals and Stability of Stochastic Functional Differential Equations. Springer, New York (2013)Hartung, F., Pituk, M.: Recent Advances in Delay Differential and Differences Equations. Springer-Verlag, Berlin Heidelberg (2014)Shaikhet, L.: Stability of equilibrium states of a nonlinear delay differential equation with stochastic perturbations. Int. J. Robust Nonlinear Control 27(6), 915–924 (2016). https://doi.org/10.1002/rnc.3605Shaikhet, L.: About some asymptotic properties of solution of stochastic delay differential equation with a logarithmic nonlinearity. Funct. Differ. Equ. 4(1–2), 57–67 (2017)Fridman, E., Shaikhet, L.: Delay-induced stability of vector second-order systems via simple Lyapunov functionals. Automatica 74, 288–296 (2016). https://doi.org/10.1016/j.automatica.2016.07.034Benhadri, M., Zeghdoudi, H.: Mean square asymptotic stability in nonlinear stochastic neutral Volterra-Levin equations with Poisson jumps and variable delays. Functiones et Approximatio Commentarii Mathematici 58(2), 157–176 (2018). https://doi.org/10.7169/facm/1657Nouri, K., Ranjbar, H.: Improved Euler-Maruyama method for numerical solution of the Itô stochastic differential systems by composite previous-current-step idea. Mediterr. J. Math. 15, 140 (2018). https://doi.org/10.1007/s00009-018-1187-8Santonja, F., Shaikhet, L.: Probabilistic stability analysis of social obesity epidemic by a delayed stochastic model. Nonlinear Anal. Real World Appl. 17, 114–125 (2014). https://doi.org/10.1016/j.nonrwa.2013.10.010Santonja, F., Shaikhet, L.: Analysing social epidemics by delayed stochastic models. Discret. Dyn. Nat. Soc. 2012, 13 (2012). https://doi.org/10.1155/2012/530472 . (Article ID 530472)Liu, L., Caraballo, T.: Analysis of a stochastic 2D-Navier-Stokes model with infinite delay. J. Dyn. Differ. Equ. pp 1–26 (2018). https://doi.org/10.1007/s10884-018-9703-xCaraballo, T., Colucci, R., Guerrini, L.: On a predator prey model with nonlinear harvesting and distributed delay. Commun. Pure Appl. Anal. 17(6), 2703–2727 (2018). https://doi.org/10.3934/cpaa.2018128Smith, R.C.: Uncertainty Quantification. Theory, Implementation and Applications. SIAM, Philadelphia (2014)Soong, T.T.: Random Differential Equations in Science and Engineering. Academic Press, New York (1973)Nouri, K., Ranjbar, H.: Mean square convergence of the numerical solution of random differential equations. Mediterr. J. Math. 12(3), 1123–1140 (2015). https://doi.org/10.1007/s00009-014-0452-8Zhou, T.: A stochastic collocation method for delay differential equations with random input. Adv. Appl. Math. Mech. 6(4), 403–418 (2014). https://doi.org/10.4208/aamm.2012.m38Shi, W., Zhang, C.: Generalized polynomial chaos for nonlinear random delay differential equations. Appl. Numer. Math. 115, 16–31 (2017). https://doi.org/10.1016/j.apnum.2016.12.004Lupulescu, V., Abbas, U.: Fuzzy delay differential equations. Fuzzy Optim. Decis. Mak. 11(1), 91–111 (2012). https://doi.org/10.1007/s10700-011-9112-7Liu, S., Debbouche, A., Wang, J.R.: Fuzzy delay differential equations. On the iterative learning control for stochastic impulsive differential equations with randomly varying trial lengths. J. Comput. Appl. Math. 312, 47–57 (2017). https://doi.org/10.1016/j.cam.2015.10.028Krapivsky, P.L., Luck, J.L., Mallick, K.: On stochastic differential equations with random delay. J. Stat. Mech. Theory Exp. (2011). https://doi.org/10.1088/1742-5468/2011/10/P10008Garrido-Atienza, M.J., Ogrowsky, A., Schmalfuss, B.: Random differential equations with random delays. Stoch. Dyn. 11(2–3), 369–388 (2011). https://doi.org/10.1142/S0219493711003358Khusainov, D.Y., Ivanov, A.F., Kovarzh, I.V.: Solution of one heat equation with delay. Nonlinear Oscil. 12, 260–282 (2009). https://doi.org/10.1007/s11072-009-0075-3Asl, F.M., Ulsoy, A.G.: Analysis of a system of linear delay differential equations. J. Dyn. Syst. Meas. Control 125, 215–223 (2003). https://doi.org/10.1115/1.1568121Kyrychko, Y.N., Hogan, S.J.: On the use of delay equations in engineering applications. J. Vib. Control 16(7–8), 943–960 (2010). https://doi.org/10.1177/1077546309341100Villafuerte, L., Braumann, C.A., Cortés, J.C., Jódar, L.: Random differential operational calculus: theory and applications. Comput. Math. Appl. 59(1), 115–125 (2010). https://doi.org/10.1016/j.camwa.2009.08.061Strand, J.L.: Random ordinary differential equations. J. Diff. Equ. 7(3), 538–553 (1970). https://doi.org/10.1016/0022-0396(70)90100-2Khusainov, D.Y., Pokojovy, M.: Solving the linear 1d thermoelasticity equations with pure delay. Int. J. Math. Math. Sci. 2015, 1–11 (2015). https://doi.org/10.1155/2015/47926

    A condition on delay for differential equations with discrete state-dependent delay

    Get PDF
    Parabolic differential equations with discrete state-dependent delay are studied. The approach, based on an additional condition on the delay function introduced in [A.V. Rezounenko, Differential equations with discrete state-dependent delay: uniqueness and well-posedness in the space of continuous functions, Nonlinear Analysis: Theory, Methods and Applications, 70 (11) (2009), 3978-3986] is developed. We propose and study a state-dependent analogue of the condition which is sufficient for the well-posedness of the corresponding initial value problem on the whole space of continuous functions CC. The dynamical system is constructed in CC and the existence of a compact global attractor is proved

    Global Stability of an SIR Epidemic Model with Delay and General Nonlinear Incidence

    Get PDF
    An SIR model with distributed delay and a general incidence function is studied. Conditions are given under which the system exhibits threshold behaviour: the disease-free equilibrium is globally asymptotically stable if R0 \u3c 1 and globally attracting if R0 = 1; if R0 \u3e 1, then the unique endemic equilibrium is globally asymptotically stable. The global stability proofs use a Lyapunov functional and do not require uniform persistence to be shown a priori. It is shown that the given conditions are satisfied by several common forms of the incidence function
    • …
    corecore