1,808 research outputs found

    A survey of robot manipulation in contact

    Get PDF
    In this survey, we present the current status on robots performing manipulation tasks that require varying contact with the environment, such that the robot must either implicitly or explicitly control the contact force with the environment to complete the task. Robots can perform more and more manipulation tasks that are still done by humans, and there is a growing number of publications on the topics of (1) performing tasks that always require contact and (2) mitigating uncertainty by leveraging the environment in tasks that, under perfect information, could be performed without contact. The recent trends have seen robots perform tasks earlier left for humans, such as massage, and in the classical tasks, such as peg-in-hole, there is a more efficient generalization to other similar tasks, better error tolerance, and faster planning or learning of the tasks. Thus, in this survey we cover the current stage of robots performing such tasks, starting from surveying all the different in-contact tasks robots can perform, observing how these tasks are controlled and represented, and finally presenting the learning and planning of the skills required to complete these tasks

    A Framework of Hybrid Force/Motion Skills Learning for Robots

    Get PDF
    Human factors and human-centred design philosophy are highly desired in today’s robotics applications such as human-robot interaction (HRI). Several studies showed that endowing robots of human-like interaction skills can not only make them more likeable but also improve their performance. In particular, skill transfer by imitation learning can increase usability and acceptability of robots by the users without computer programming skills. In fact, besides positional information, muscle stiffness of the human arm, contact force with the environment also play important roles in understanding and generating human-like manipulation behaviours for robots, e.g., in physical HRI and tele-operation. To this end, we present a novel robot learning framework based on Dynamic Movement Primitives (DMPs), taking into consideration both the positional and the contact force profiles for human-robot skills transferring. Distinguished from the conventional method involving only the motion information, the proposed framework combines two sets of DMPs, which are built to model the motion trajectory and the force variation of the robot manipulator, respectively. Thus, a hybrid force/motion control approach is taken to ensure the accurate tracking and reproduction of the desired positional and force motor skills. Meanwhile, in order to simplify the control system, a momentum-based force observer is applied to estimate the contact force instead of employing force sensors. To deploy the learned motion-force robot manipulation skills to a broader variety of tasks, the generalization of these DMP models in actual situations is also considered. Comparative experiments have been conducted using a Baxter Robot to verify the effectiveness of the proposed learning framework on real-world scenarios like cleaning a table

    Robot learning from demonstration of force-based manipulation tasks

    Get PDF
    One of the main challenges in Robotics is to develop robots that can interact with humans in a natural way, sharing the same dynamic and unstructured environments. Such an interaction may be aimed at assisting, helping or collaborating with a human user. To achieve this, the robot must be endowed with a cognitive system that allows it not only to learn new skills from its human partner, but also to refine or improve those already learned. In this context, learning from demonstration appears as a natural and userfriendly way to transfer knowledge from humans to robots. This dissertation addresses such a topic and its application to an unexplored field, namely force-based manipulation tasks learning. In this kind of scenarios, force signals can convey data about the stiffness of a given object, the inertial components acting on a tool, a desired force profile to be reached, etc. Therefore, if the user wants the robot to learn a manipulation skill successfully, it is essential that its cognitive system is able to deal with force perceptions. The first issue this thesis tackles is to extract the input information that is relevant for learning the task at hand, which is also known as the what to imitate? problem. Here, the proposed solution takes into consideration that the robot actions are a function of sensory signals, in other words the importance of each perception is assessed through its correlation with the robot movements. A Mutual Information analysis is used for selecting the most relevant inputs according to their influence on the output space. In this way, the robot can gather all the information coming from its sensory system, and the perception selection module proposed here automatically chooses the data the robot needs to learn a given task. Having selected the relevant input information for the task, it is necessary to represent the human demonstrations in a compact way, encoding the relevant characteristics of the data, for instance, sequential information, uncertainty, constraints, etc. This issue is the next problem addressed in this thesis. Here, a probabilistic learning framework based on hidden Markov models and Gaussian mixture regression is proposed for learning force-based manipulation skills. The outstanding features of such a framework are: (i) it is able to deal with the noise and uncertainty of force signals because of its probabilistic formulation, (ii) it exploits the sequential information embedded in the model for managing perceptual aliasing and time discrepancies, and (iii) it takes advantage of task variables to encode those force-based skills where the robot actions are modulated by an external parameter. Therefore, the resulting learning structure is able to robustly encode and reproduce different manipulation tasks. After, this thesis goes a step forward by proposing a novel whole framework for learning impedance-based behaviors from demonstrations. The key aspects here are that this new structure merges vision and force information for encoding the data compactly, and it allows the robot to have different behaviors by shaping its compliance level over the course of the task. This is achieved by a parametric probabilistic model, whose Gaussian components are the basis of a statistical dynamical system that governs the robot motion. From the force perceptions, the stiffness of the springs composing such a system are estimated, allowing the robot to shape its compliance. This approach permits to extend the learning paradigm to other fields different from the common trajectory following. The proposed frameworks are tested in three scenarios, namely, (a) the ball-in-box task, (b) drink pouring, and (c) a collaborative assembly, where the experimental results evidence the importance of using force perceptions as well as the usefulness and strengths of the methods

    Robotic learning of force-based industrial manipulation tasks

    Get PDF
    Even with the rapid technological advancements, robots are still not the most comfortable machines to work with. Firstly, due to the separation of the robot and human workspace which imposes an additional financial burden. Secondly, due to the significant re-programming cost in case of changing products, especially in Small and Medium-sized Enterprises (SMEs). Therefore, there is a significant need to reduce the programming efforts required to enable robots to perform various tasks while sharing the same space with a human operator. Hence, the robot must be equipped with a cognitive and perceptual capabilities that facilitate human-robot interaction. Humans use their various senses to perform tasks such as vision, smell and taste. One sensethat plays a significant role in human activity is ’touch’ or ’force’. For example, holding a cup of tea, or making fine adjustments while inserting a key requires haptic information to achieve the task successfully. In all these examples, force and torque data are crucial for the successful completion of the activity. Also, this information implicitly conveys data about contact force, object stiffness, and many others. Hence, a deep understanding of the execution of such events can bridge the gap between humans and robots. This thesis is being directed to equip an industrial robot with the ability to deal with force perceptions and then learn force-based tasks using Learning from Demonstration (LfD).To learn force-based tasks using LfD, it is essential to extract task-relevant features from the force information. Then, knowledge must be extracted and encoded form the task-relevant features. Hence, the captured skills can be reproduced in a new scenario. In this thesis, these elements of LfD were achieved using different approaches based on the demonstrated task. In this thesis, four robotics problems were addressed using LfD framework. The first challenge was to filter out robots’ internal forces (irrelevant signals) using data-driven approach. The second robotics challenge was the recognition of the Contact State (CS) during assembly tasks. To tackle this challenge, a symbolic based approach was proposed, in which a force/torque signals; during demonstrated assembly, the task was encoded as a sequence of symbols. The third challenge was to learn a human-robot co-manipulation task based on LfD. In this case, an ensemble machine learning approach was proposed to capture such a skill. The last challenge in this thesis, was to learn an assembly task by demonstration with the presents of parts geometrical variation. Hence, a new learning approach based on Artificial Potential Field (APF) to learn a Peg-in-Hole (PiH) assembly task which includes no-contact and contact phases. To sum up, this thesis focuses on the use of data-driven approaches to learning force based task in an industrial context. Hence, different machine learning approaches were implemented, developed and evaluated in different scenarios. Then, the performance of these approaches was compared with mathematical modelling based approaches.</div

    The Design of a Haptic Device for Training and Evaluating Surgeon and Novice Laparoscopic Movement Skills

    Get PDF
    As proper levels of force application are necessary to ensure patient safety, and training hours with an expert on live subjects are difficult, enhanced computer-based training is needed to teach the next generation of surgeons. Considering the role of touch in surgery, there is a need for a device capable of discerning the haptic ability of surgical trainees. This need is amplified by minimally invasive surgical techniques where a surgeon\u27s sense of tissue properties comes not directly through their own hands but indirectly through the tools. A haptic device capable of producing a realistic range of forces and motions that can be used to test the ability of users to replicate salient forces in specific maneuvers is proposed. This device also provides the opportunity to use inexpensive haptic trainers to educate surgeons about proper force application. A novel haptic device was designed and built to provide a simplified analogy of the forces and torques felt during free tool motion and constrained pushing, sweep with laparoscopic instruments. The device is realized as a single-degree-of-freedom robotic system controlled using real-time computer hardware and software. The details of the device design and the results of testing the design against the specifications are presented. A significant achievement in the design is the use of a two-camera vision system to sense the user placement of the input device. The capability of the device as a first-order screening tool to distinguish between novices and expert surgeons is described

    Intuitive Instruction of Industrial Robots : A Knowledge-Based Approach

    Get PDF
    With more advanced manufacturing technologies, small and medium sized enterprises can compete with low-wage labor by providing customized and high quality products. For small production series, robotic systems can provide a cost-effective solution. However, for robots to be able to perform on par with human workers in manufacturing industries, they must become flexible and autonomous in their task execution and swift and easy to instruct. This will enable small businesses with short production series or highly customized products to use robot coworkers without consulting expert robot programmers. The objective of this thesis is to explore programming solutions that can reduce the programming effort of sensor-controlled robot tasks. The robot motions are expressed using constraints, and multiple of simple constrained motions can be combined into a robot skill. The skill can be stored in a knowledge base together with a semantic description, which enables reuse and reasoning. The main contributions of the thesis are 1) development of ontologies for knowledge about robot devices and skills, 2) a user interface that provides simple programming of dual-arm skills for non-experts and experts, 3) a programming interface for task descriptions in unstructured natural language in a user-specified vocabulary and 4) an implementation where low-level code is generated from the high-level descriptions. The resulting system greatly reduces the number of parameters exposed to the user, is simple to use for non-experts and reduces the programming time for experts by 80%. The representation is described on a semantic level, which means that the same skill can be used on different robot platforms. The research is presented in seven papers, the first describing the knowledge representation and the second the knowledge-based architecture that enables skill sharing between robots. The third paper presents the translation from high-level instructions to low-level code for force-controlled motions. The two following papers evaluate the simplified programming prototype for non-expert and expert users. The last two present how program statements are extracted from unstructured natural language descriptions

    Human-Robot Collaboration Enabled By Real-Time Vision Tracking

    Get PDF
    The number of robotic systems in the world is growing rapidly. However, most industrial robots are isolated in caged environments for the safety of users. There is an urgent need for human-in-the-loop collaborative robotic systems since robots are very good at performing precise and repetitive tasks but lack the cognitive ability and soft skills of humans. To fill this need, a key challenge is how to enable a robot to interpret its human co-worker’s motion and intention. This research addresses this challenge by developing a collaborative human-robot interface via innovations in computer vision, robotics, and system integration techniques. Specifically, this work integrates a holistic framework of cameras, motion sensors, and a 7-degree-of-freedom robotic manipulator controlled by vision data processing and motion planning algorithms implemented in the open-source robotics middleware Robot Operating System (ROS)

    Energy-based control approaches in human-robot collaborative disassembly

    Get PDF

    Physical human-robot collaboration: Robotic systems, learning methods, collaborative strategies, sensors, and actuators

    Get PDF
    This article presents a state-of-the-art survey on the robotic systems, sensors, actuators, and collaborative strategies for physical human-robot collaboration (pHRC). This article starts with an overview of some robotic systems with cutting-edge technologies (sensors and actuators) suitable for pHRC operations and the intelligent assist devices employed in pHRC. Sensors being among the essential components to establish communication between a human and a robotic system are surveyed. The sensor supplies the signal needed to drive the robotic actuators. The survey reveals that the design of new generation collaborative robots and other intelligent robotic systems has paved the way for sophisticated learning techniques and control algorithms to be deployed in pHRC. Furthermore, it revealed the relevant components needed to be considered for effective pHRC to be accomplished. Finally, a discussion of the major advances is made, some research directions, and future challenges are presented
    • …
    corecore