508,901 research outputs found

    The lattice dimension of a graph

    Get PDF
    We describe a polynomial time algorithm for, given an undirected graph G, finding the minimum dimension d such that G may be isometrically embedded into the d-dimensional integer lattice Z^d.Comment: 6 pages, 3 figure

    The k-metric dimension of a graph

    Full text link
    As a generalization of the concept of a metric basis, this article introduces the notion of kk-metric basis in graphs. Given a connected graph G=(V,E)G=(V,E), a set SVS\subseteq V is said to be a kk-metric generator for GG if the elements of any pair of different vertices of GG are distinguished by at least kk elements of SS, i.e., for any two different vertices u,vVu,v\in V, there exist at least kk vertices w1,w2,...,wkSw_1,w_2,...,w_k\in S such that dG(u,wi)dG(v,wi)d_G(u,w_i)\ne d_G(v,w_i) for every i{1,...,k}i\in \{1,...,k\}. A metric generator of minimum cardinality is called a kk-metric basis and its cardinality the kk-metric dimension of GG. A connected graph GG is kk-metric dimensional if kk is the largest integer such that there exists a kk-metric basis for GG. We give a necessary and sufficient condition for a graph to be kk-metric dimensional and we obtain several results on the kk-metric dimension

    On a conjecture regarding the upper graph box dimension of bounded subsets of the real line

    Full text link
    Let X \subset R be a bounded set; we introduce a formula that calculates the upper graph box dimension of X (i.e.the supremum of the upper box dimension of the graph over all uniformly continuous functions defined on X). We demonstrate the strength of the formula by calculating the upper graph box dimension for some sets and by giving an "one line" proof, alternative to the one given in [1], of the fact that if X has finitely many isolated points then its upper graph box dimension is equal to the upper box dimension plus one. Furthermore we construct a collection of sets X with infinitely many isolated points, having upper box dimension a taking values from zero to one while their graph box dimension takes any value in [max{2a,1},a + 1], answering this way, negatively to a conjecture posed in [1]

    Local Boxicity, Local Dimension, and Maximum Degree

    Full text link
    In this paper, we focus on two recently introduced parameters in the literature, namely `local boxicity' (a parameter on graphs) and `local dimension' (a parameter on partially ordered sets). We give an `almost linear' upper bound for both the parameters in terms of the maximum degree of a graph (for local dimension we consider the comparability graph of a poset). Further, we give an O(nΔ2)O(n\Delta^2) time deterministic algorithm to compute a local box representation of dimension at most 3Δ3\Delta for a claw-free graph, where nn and Δ\Delta denote the number of vertices and the maximum degree, respectively, of the graph under consideration. We also prove two other upper bounds for the local boxicity of a graph, one in terms of the number of vertices and the other in terms of the number of edges. Finally, we show that the local boxicity of a graph is upper bounded by its `product dimension'.Comment: 11 page

    The metric dimension and metric independence of a graph

    Get PDF
    A vertex x of a graph G resolves two vertices u and v of G if the distance from x to u does not equal the distance from x to v. A set S of vertices of G is a resolving set for G if every two distinct vertices of G are resolved by some vertex of S. The minimum cardinality of a resolving set for G is called the metric dimension of G. The problem of nding the metric dimension of a graph is formulated as an integer pro- gramming problem. It is shown how a relaxation of this problem leads to a linear programming problem and hence to a fractional version of the metric dimension of a graph. The linear programming dual of this problem is considered and the solution to the corresponding integer programming problem is called the metric independence of the graph. It is shown that the problem of deciding whether, for a given graph G, the metric dimension of G equals its metric independence is NP- complete. Trees with equal metric dimension and metric independence are characterized. The metric independence number is established for various classes of graphs.Preprin
    corecore