7,910 research outputs found

    Completeness of algebraic CPS simulations

    Full text link
    The algebraic lambda calculus and the linear algebraic lambda calculus are two extensions of the classical lambda calculus with linear combinations of terms. They arise independently in distinct contexts: the former is a fragment of the differential lambda calculus, the latter is a candidate lambda calculus for quantum computation. They differ in the handling of application arguments and algebraic rules. The two languages can simulate each other using an algebraic extension of the well-known call-by-value and call-by-name CPS translations. These simulations are sound, in that they preserve reductions. In this paper, we prove that the simulations are actually complete, strengthening the connection between the two languages.Comment: In Proceedings DCM 2011, arXiv:1207.682

    Full Abstraction for the Resource Lambda Calculus with Tests, through Taylor Expansion

    Full text link
    We study the semantics of a resource-sensitive extension of the lambda calculus in a canonical reflexive object of a category of sets and relations, a relational version of Scott's original model of the pure lambda calculus. This calculus is related to Boudol's resource calculus and is derived from Ehrhard and Regnier's differential extension of Linear Logic and of the lambda calculus. We extend it with new constructions, to be understood as implementing a very simple exception mechanism, and with a "must" parallel composition. These new operations allow to associate a context of this calculus with any point of the model and to prove full abstraction for the finite sub-calculus where ordinary lambda calculus application is not allowed. The result is then extended to the full calculus by means of a Taylor Expansion formula. As an intermediate result we prove that the exception mechanism is not essential in the finite sub-calculus

    On Differential Rota-Baxter Algebras

    Get PDF
    A Rota-Baxter operator of weight λ\lambda is an abstraction of both the integral operator (when λ=0\lambda=0) and the summation operator (when λ=1\lambda=1). We similarly define a differential operator of weight λ\lambda that includes both the differential operator (when λ=0\lambda=0) and the difference operator (when λ=1\lambda=1). We further consider an algebraic structure with both a differential operator of weight λ\lambda and a Rota-Baxter operator of weight λ\lambda that are related in the same way that the differential operator and the integral operator are related by the First Fundamental Theorem of Calculus. We construct free objects in the corresponding categories. In the commutative case, the free objects are given in terms of generalized shuffles, called mixable shuffles. In the noncommutative case, the free objects are given in terms of angularly decorated rooted forests. As a byproduct, we obtain structures of a differential algebra on decorated and undecorated planar rooted forests.Comment: 21 page

    Noncommutative differential calculus for Moyal subalgebras

    Full text link
    We build a differential calculus for subalgebras of the Moyal algebra on R^4 starting from a redundant differential calculus on the Moyal algebra, which is suitable for reduction. In some cases we find a frame of 1-forms which allows to realize the complex of forms as a tensor product of the noncommutative subalgebras with the external algebra Lambda^*.Comment: 13 pages, no figures. One reference added, minor correction

    The algebraic λ\lambda-calculus is a conservative extension of the ordinary λ\lambda-calculus

    Full text link
    The algebraic λ\lambda-calculus is an extension of the ordinary λ\lambda-calculus with linear combinations of terms. We establish that two ordinary λ\lambda-terms are equivalent in the algebraic λ\lambda-calculus iff they are β\beta-equal. Although this result was originally stated in the early 2000's (in the setting of Ehrhard and Regnier's differential λ\lambda-calculus), the previously proposed proofs were wrong: we explain why previous approaches failed and develop a new proof technique to establish conservativity

    Normalizing the Taylor expansion of non-deterministic {\lambda}-terms, via parallel reduction of resource vectors

    Full text link
    It has been known since Ehrhard and Regnier's seminal work on the Taylor expansion of λ\lambda-terms that this operation commutes with normalization: the expansion of a λ\lambda-term is always normalizable and its normal form is the expansion of the B\"ohm tree of the term. We generalize this result to the non-uniform setting of the algebraic λ\lambda-calculus, i.e. λ\lambda-calculus extended with linear combinations of terms. This requires us to tackle two difficulties: foremost is the fact that Ehrhard and Regnier's techniques rely heavily on the uniform, deterministic nature of the ordinary λ\lambda-calculus, and thus cannot be adapted; second is the absence of any satisfactory generic extension of the notion of B\"ohm tree in presence of quantitative non-determinism, which is reflected by the fact that the Taylor expansion of an algebraic λ\lambda-term is not always normalizable. Our solution is to provide a fine grained study of the dynamics of β\beta-reduction under Taylor expansion, by introducing a notion of reduction on resource vectors, i.e. infinite linear combinations of resource λ\lambda-terms. The latter form the multilinear fragment of the differential λ\lambda-calculus, and resource vectors are the target of the Taylor expansion of λ\lambda-terms. We show the reduction of resource vectors contains the image of any β\beta-reduction step, from which we deduce that Taylor expansion and normalization commute on the nose. We moreover identify a class of algebraic λ\lambda-terms, encompassing both normalizable algebraic λ\lambda-terms and arbitrary ordinary λ\lambda-terms: the expansion of these is always normalizable, which guides the definition of a generalization of B\"ohm trees to this setting

    A coherent differential PCF

    Full text link
    The categorical models of the differential lambda-calculus are additive categories because of the Leibniz rule which requires the summation of two expressions. This means that, as far as the differential lambda-calculus and differential linear logic are concerned, these models feature finite non-determinism and indeed these languages are essentially non-deterministic. In a previous paper we introduced a categorical framework for differentiation which does not require additivity and is compatible with deterministic models such as coherence spaces and probabilistic models such as probabilistic coherence spaces. Based on this semantics we develop a syntax of a deterministic version of the differential lambda-calculus. One nice feature of this new approach to differentiation is that it is compatible with general fixpoints of terms, so our language is actually a differential extension of PCF for which we provide a fully deterministic operational semantics

    Modules over monads and operational semantics

    Full text link
    This paper is a contribution to the search for efficient and high-level mathematical tools to specify and reason about (abstract) programming languages or calculi. Generalising the reduction monads of Ahrens et al., we introduce transition monads, thus covering new applications such as lambda-bar-mu-calculus, pi-calculus, Positive GSOS specifications, differential lambda-calculus, and the big-step, simply-typed, call-by-value lambda-calculus. Moreover, we design a suitable notion of signature for transition monads
    corecore