62 research outputs found

    On flows of graphs

    Get PDF
    Tutte\u27s 3-flow Conjecture, 4-flow Conjecture, and 5-flow Conjecture are among the most fascinating problems in graph theory. In this dissertation, we mainly focus on the nowhere-zero integer flow of graphs, the circular flow of graphs and the bidirected flow of graphs. We confirm Tutte\u27s 3-flow Conjecture for the family of squares of graphs and the family of triangularly connected graphs. In fact, we obtain much stronger results on this conjecture in terms of group connectivity and get the complete characterization of such graphs in those families which do not admit nowhere-zero 3-flows. For the circular flows of graphs, we establish some sufficient conditions for a graph to have circular flow index less than 4, which generalizes a new known result to a large family of graphs. For the Bidirected Flow Conjecture, we prove it to be true for 6-edge connected graphs

    Integer Flows and Circuit Covers of Graphs and Signed Graphs

    Get PDF
    The work in Chapter 2 is motivated by Tutte and Jaeger\u27s pioneering work on converting modulo flows into integer-valued flows for ordinary graphs. For a signed graphs (G, sigma), we first prove that for each k ∈ {lcub}2, 3{rcub}, if (G, sigma) is (k -- 1)-edge-connected and contains an even number of negative edges when k = 2, then every modulo k-flow of (G, sigma) can be converted into an integer-valued ( k + 1)-ow with a larger or the same support. We also prove that if (G, sigma) is odd-(2p+1)-edge-connected, then (G, sigma) admits a modulo circular (2 + 1/ p)-flows if and only if it admits an integer-valued circular (2 + 1/p)-flows, which improves all previous result by Xu and Zhang (DM2005), Schubert and Steffen (EJC2015), and Zhu (JCTB2015).;Shortest circuit cover conjecture is one of the major open problems in graph theory. It states that every bridgeless graph G contains a set of circuits F such that each edge is contained in at least one member of F and the length of F is at most 7/5∥E(G)∥. This concept was recently generalized to signed graphs by Macajova et al. (JGT2015). In Chapter 3, we improve their upper bound from 11∥E( G)∥ to 14/3 ∥E(G)∥, and if G is 2-edgeconnected and has even negativeness, then it can be further reduced to 11/3 ∥E(G)∥.;Tutte\u27s 3-flow conjecture has been studied by many graph theorists in the last several decades. As a new approach to this conjecture, DeVos and Thomassen considered the vectors as ow values and found that there is a close relation between vector S1-flows and integer 3-NZFs. Motivated by their observation, in Chapter 4, we prove that if a graph G admits a vector S1-flow with rank at most two, then G admits an integer 3-NZF.;The concept of even factors is highly related to the famous Four Color Theorem. We conclude this dissertation in Chapter 5 with an improvement of a recent result by Chen and Fan (JCTB2016) on the upperbound of even factors. We show that if a graph G contains an even factor, then it contains an even factor H with.;∥E(H)∥ β‰₯ 4/7 (∥ E(G)∥+1)+ 1/7 ∥V2 (G)∥, where V2( G) is the set of vertices of degree two

    Representing and decomposing genomic structural variants as balanced integer flows on sequence graphs

    Get PDF
    The study of genomic variation has provided key insights into the functional role of mutations. Predominantly, studies have focused on single nucleotide variants (SNV), which are relatively easy to detect and can be described with rich mathematical models. However, it has been observed that genomes are highly plastic, and that whole regions can be moved, removed or duplicated in bulk. These structural variants (SV) have been shown to have significant impact on the phenotype, but their study has been held back by the combinatorial complexity of the underlying models. We describe here a general model of structural variation that encompasses both balanced rearrangements and arbitrary copy-numbers variants (CNV). In this model, we show that the space of possible evolutionary histories that explain the structural differences between any two genomes can be sampled ergodically

    Flows on Signed Graphs

    Get PDF
    This dissertation focuses on integer flow problems within specific signed graphs. The theory of integer flows, which serves as a dual problem to vertex coloring of planar graphs, was initially introduced by Tutte as a tool related to the Four-Color Theorem. This theory has been extended to signed graphs. In 1983, Bouchet proposed a conjecture asserting that every flow-admissible signed graph admits a nowhere-zero 6-flow. To narrow dawn the focus, we investigate cubic signed graphs in Chapter 2. We prove that every flow-admissible 3-edge-colorable cubic signed graph admits a nowhere-zero 10-flow. This together with the 4-color theorem implies that every flow-admissible bridgeless planar signed graph admits a nowhere-zero 10-flow. As a byproduct of this research, we also demonstrate that every flow-admissible hamiltonian signed graph can admit a nowhere-zero 8-flow. In Chapter 3, we delve into triangularly connected signed graphs. Here, A triangle-path in a graph G is defined as a sequence of distinct triangles T1,T2,…,TmT_1,T_2,\ldots,T_m in G such that for any i, j with 1≀i3˘cj≀m1\leq i \u3c j \leq m, ∣E(Ti)∩E(Ti+1)∣=1|E(T_i)\cap E(T_{i+1})|=1 and E(Ti)∩E(Tj)=βˆ…E(T_i)\cap E(T_j)=\emptyset if j3˘ei+1j \u3e i+1. We categorize a connected graph GG as triangularly connected if it can be demonstrated that for any two nonparallel edges ee and e2˘7e\u27, there exists a triangle-path T1T2β‹―TmT_1T_2\cdots T_m such that e∈E(T1)e\in E(T_1) and e2˘7∈E(Tm)e\u27\in E(T_m). For ordinary graphs, Fan {\it et al.} characterized all triangularly connected graphs that admit nowhere-zero 33-flows or 44-flows. Corollaries of this result extended to integer flow in certain families of ordinary graphs, such as locally connected graphs due to Lai and certain types of products of graphs due to Imrich et al. In this dissertation, we extend Fan\u27s result for triangularly connected graphs to signed graphs. We proved that a flow-admissible triangularly connected signed graph (G,Οƒ)(G,\sigma) admits a nowhere-zero 44-flow if and only if (G,Οƒ)(G,\sigma) is not the wheel W5W_5 associated with a specific signature. Moreover, this result is proven to be sharp since we identify infinitely many unbalanced triangularly connected signed graphs that can admit a nowhere-zero 4-flow but not 3-flow.\\ Chapter 4 investigates integer flow problems within K4K_4-minor free signed graphs. A minor of a graph GG refers to any graph that can be derived from GG through a series of vertex and edge deletions and edge contractions. A graph is considered K4K_4-minor free if K4K_4 is not a minor of GG. While Bouchet\u27s conjecture is known to be tight for some signed graphs with a flow number of 6. Kompi\v{s}ov\\u27{a} and M\\u27{a}\v{c}ajov\\u27{a} extended those signed graph with a specific signature to a family \M, and they also put forward a conjecture that suggests if a flow-admissible signed graph does not admit a nowhere-zero 5-flow, then it belongs to \M. In this dissertation, we delve into the members in \M that are K4K_4-minor free, designating this subfamily as N\N. We provide a proof demonstrating that every flow-admissible, K4K_4-minor free signed graph admits a nowhere-zero 5-flow if and only if it does not belong to the specified family N\N
    • …
    corecore