4,548 research outputs found

    Kochen-Specker Sets and the Rank-1 Quantum Chromatic Number

    Full text link
    The quantum chromatic number of a graph GG is sandwiched between its chromatic number and its clique number, which are well known NP-hard quantities. We restrict our attention to the rank-1 quantum chromatic number χq(1)(G)\chi_q^{(1)}(G), which upper bounds the quantum chromatic number, but is defined under stronger constraints. We study its relation with the chromatic number χ(G)\chi(G) and the minimum dimension of orthogonal representations ξ(G)\xi(G). It is known that ξ(G)χq(1)(G)χ(G)\xi(G) \leq \chi_q^{(1)}(G) \leq \chi(G). We answer three open questions about these relations: we give a necessary and sufficient condition to have ξ(G)=χq(1)(G)\xi(G) = \chi_q^{(1)}(G), we exhibit a class of graphs such that ξ(G)<χq(1)(G)\xi(G) < \chi_q^{(1)}(G), and we give a necessary and sufficient condition to have χq(1)(G)<χ(G)\chi_q^{(1)}(G) < \chi(G). Our main tools are Kochen-Specker sets, collections of vectors with a traditionally important role in the study of noncontextuality of physical theories, and more recently in the quantification of quantum zero-error capacities. Finally, as a corollary of our results and a result by Avis, Hasegawa, Kikuchi, and Sasaki on the quantum chromatic number, we give a family of Kochen-Specker sets of growing dimension.Comment: 12 page

    Complete Multipartite Graphs and the Relaxed Coloring Game

    Get PDF
    Let k be a positive integer, d be a nonnegative integer, and G be a finite graph. Two players, Alice and Bob, play a game on G by coloring the uncolored vertices with colors from a set X of k colors. At all times, the subgraph induced by a color class must have maximum degree at most d. Alice wins the game if all vertices are eventually colored; otherwise, Bob wins. The least k such that Alice has a winning strategy is called the d-relaxed game chromatic number of G, denoted χ gd (G). It is known that there exist graphs such that χ g0 (G) = 3, but χ g1 (G) \u3e 3. We will show that for all positive integers m, there exists a complete multipartite graph G such that m ≤ χ g0 (G) \u3c χ g1 (G)

    Sabidussi Versus Hedetniemi for Three Variations of the Chromatic Number

    Full text link
    We investigate vector chromatic number, Lovasz theta of the complement, and quantum chromatic number from the perspective of graph homomorphisms. We prove an analog of Sabidussi's theorem for each of these parameters, i.e. that for each of the parameters, the value on the Cartesian product of graphs is equal to the maximum of the values on the factors. We also prove an analog of Hedetniemi's conjecture for Lovasz theta of the complement, i.e. that its value on the categorical product of graphs is equal to the minimum of its values on the factors. We conjecture that the analogous results hold for vector and quantum chromatic number, and we prove that this is the case for some special classes of graphs.Comment: 18 page

    Coloring triangle-free rectangle overlap graphs with O(loglogn)O(\log\log n) colors

    Get PDF
    Recently, it was proved that triangle-free intersection graphs of nn line segments in the plane can have chromatic number as large as Θ(loglogn)\Theta(\log\log n). Essentially the same construction produces Θ(loglogn)\Theta(\log\log n)-chromatic triangle-free intersection graphs of a variety of other geometric shapes---those belonging to any class of compact arc-connected sets in R2\mathbb{R}^2 closed under horizontal scaling, vertical scaling, and translation, except for axis-parallel rectangles. We show that this construction is asymptotically optimal for intersection graphs of boundaries of axis-parallel rectangles, which can be alternatively described as overlap graphs of axis-parallel rectangles. That is, we prove that triangle-free rectangle overlap graphs have chromatic number O(loglogn)O(\log\log n), improving on the previous bound of O(logn)O(\log n). To this end, we exploit a relationship between off-line coloring of rectangle overlap graphs and on-line coloring of interval overlap graphs. Our coloring method decomposes the graph into a bounded number of subgraphs with a tree-like structure that "encodes" strategies of the adversary in the on-line coloring problem. Then, these subgraphs are colored with O(loglogn)O(\log\log n) colors using a combination of techniques from on-line algorithms (first-fit) and data structure design (heavy-light decomposition).Comment: Minor revisio

    The Relaxed Edge-Coloring Game and \u3cem\u3ek\u3c/em\u3e-Degenerate Graphs

    Get PDF
    The (r, d)-relaxed edge-coloring game is a two-player game using r colors played on the edge set of a graph G. We consider this game on forests and more generally, on k-degenerate graphs. If F is a forest with ∆(F) = ∆, then the first player, Alice, has a winning strategy for this game with r = ∆ − j and d ≥ 2j + 2 for 0 ≤ j ≤ ∆ − 1. This both improves and generalizes the result for trees in [10]. More broadly, we generalize the main result in [10] by showing that if G is k-degenerate with ∆(G) = ∆ and j ∈ [∆ + k − 1], then there exists a function h(k, j) such that Alice has a winning strategy for this game with r = ∆ + k − j and d ≥ h(k, j)

    Towards on-line Ohba's conjecture

    Full text link
    The on-line choice number of a graph is a variation of the choice number defined through a two person game. It is at least as large as the choice number for all graphs and is strictly larger for some graphs. In particular, there are graphs GG with V(G)=2χ(G)+1|V(G)| = 2 \chi(G)+1 whose on-line choice numbers are larger than their chromatic numbers, in contrast to a recently confirmed conjecture of Ohba that every graph GG with V(G)2χ(G)+1|V(G)| \le 2 \chi(G)+1 has its choice number equal its chromatic number. Nevertheless, an on-line version of Ohba conjecture was proposed in [P. Huang, T. Wong and X. Zhu, Application of polynomial method to on-line colouring of graphs, European J. Combin., 2011]: Every graph GG with V(G)2χ(G)|V(G)| \le 2 \chi(G) has its on-line choice number equal its chromatic number. This paper confirms the on-line version of Ohba conjecture for graphs GG with independence number at most 3. We also study list colouring of complete multipartite graphs K3kK_{3\star k} with all parts of size 3. We prove that the on-line choice number of K3kK_{3 \star k} is at most 3/2k3/2k, and present an alternate proof of Kierstead's result that its choice number is (4k1)/3\lceil (4k-1)/3 \rceil. For general graphs GG, we prove that if V(G)χ(G)+χ(G)|V(G)| \le \chi(G)+\sqrt{\chi(G)} then its on-line choice number equals chromatic number.Comment: new abstract and introductio
    corecore