1,219 research outputs found

    The Zeta Function of a Hypergraph

    Get PDF
    We generalize the Ihara-Selberg zeta function to hypergraphs in a natural way. Hashimoto's factorization results for biregular bipartite graphs apply, leading to exact factorizations. For (d,r)(d,r)-regular hypergraphs, we show that a modified Riemann hypothesis is true if and only if the hypergraph is Ramanujan in the sense of Winnie Li and Patrick Sol\'e. Finally, we give an example to show how the generalized zeta function can be applied to graphs to distinguish non-isomorphic graphs with the same Ihara-Selberg zeta function.Comment: 24 pages, 6 figure

    Hypergraph Learning with Line Expansion

    Full text link
    Previous hypergraph expansions are solely carried out on either vertex level or hyperedge level, thereby missing the symmetric nature of data co-occurrence, and resulting in information loss. To address the problem, this paper treats vertices and hyperedges equally and proposes a new hypergraph formulation named the \emph{line expansion (LE)} for hypergraphs learning. The new expansion bijectively induces a homogeneous structure from the hypergraph by treating vertex-hyperedge pairs as "line nodes". By reducing the hypergraph to a simple graph, the proposed \emph{line expansion} makes existing graph learning algorithms compatible with the higher-order structure and has been proven as a unifying framework for various hypergraph expansions. We evaluate the proposed line expansion on five hypergraph datasets, the results show that our method beats SOTA baselines by a significant margin

    Spectral Thresholds in the Bipartite Stochastic Block Model

    Get PDF
    We consider a bipartite stochastic block model on vertex sets V1V_1 and V2V_2, with planted partitions in each, and ask at what densities efficient algorithms can recover the partition of the smaller vertex set. When ∣V2βˆ£β‰«βˆ£V1∣|V_2| \gg |V_1|, multiple thresholds emerge. We first locate a sharp threshold for detection of the partition, in the sense of the results of \cite{mossel2012stochastic,mossel2013proof} and \cite{massoulie2014community} for the stochastic block model. We then show that at a higher edge density, the singular vectors of the rectangular biadjacency matrix exhibit a localization / delocalization phase transition, giving recovery above the threshold and no recovery below. Nevertheless, we propose a simple spectral algorithm, Diagonal Deletion SVD, which recovers the partition at a nearly optimal edge density. The bipartite stochastic block model studied here was used by \cite{feldman2014algorithm} to give a unified algorithm for recovering planted partitions and assignments in random hypergraphs and random kk-SAT formulae respectively. Our results give the best known bounds for the clause density at which solutions can be found efficiently in these models as well as showing a barrier to further improvement via this reduction to the bipartite block model.Comment: updated version, will appear in COLT 201
    • …
    corecore