3,182 research outputs found

    Validation of a vehicle emulation platform supporting OBD-II communications

    Full text link
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In the next few years, important developments are expected in the Intelligent Transportation Systems (ITS) area. One of the key issues enabling future solutions is achieving an effective integration between mobile apps and vehicles. Such integration can be efficiently achieved on all existing vehicles by relying on the On Board Diagnostic (OBD-II) interface. This allows obtaining critical information such as speed, fuel consumption, gas emissions and system failures. In this paper we propose a vehicle emulation platform, called VEWE, that allows developing and testing OBD-II aware applications. The advantages of this approach include: avoiding the need for a real vehicle, allowing to easily generate realistic vehicle parameter patterns, and supporting emulated GPS functionality. We evaluate our platform by conducting a performance analysis in terms of OBD-II response times and channel capacity when relying on a Bluetooth adapter. We compare our results with respect to those obtained in real vehicles, and demonstrate that our VEWE platform behaves similarly to realistic on board devices, thereby providing a complete and reliable platform for smartphone application development.This work was partially supported by the Ministerio de Ciencia e Innovación, Spain, under Grant TIN2011-27543-C03-01Alvear Alvear, Ó.; Tavares De Araujo Cesariny Calafate, CM.; Cano Escribá, JC.; Manzoni, P. (2015). Validation of a vehicle emulation platform supporting OBD-II communications. https://doi.org/10.1109/CCNC.2015.7158092

    A novel framework to promote eco-driving through smartphone-vehicle integration

    Full text link
    Tesis por compendioIt was not that long ago, just in the first half on the 1990s, when mobile phones were first introduced, being big and expensive. All you could do with them was to make phone calls. Since then mobile devices have experienced a great technological advance: we carry smartphones in our pockets that provide Internet access, having accelerometers that can measure acceleration, a gyroscope that can provide orientation information, different wireless interfaces such as Bluetooth connections, and above all, great computing power. On the other hand, the automobile industry has evolved significantly during the last 10 years. One of the most exciting advances in vehicle development is vehicle-to-vehicle V2V communication, which allows cars to communicate with each other over a dedicated Wi-Fi band, and share information about vehicle speed, route direction, traffic flow, and road and weather conditions. An example of such a system is GM's (General Motors) OnStar, introduced in 1996, and that provides automatic response in case of an accident, stolen-vehicle recovery, remote door unlock, and vehicle diagnostics. Also, the standard On Board Diagnosis (OBD-II), available for several years, allows us to connect to the Electronic Control Unit (ECU) via a Bluetooth OBD-II connector. This connection interface allows connectivity between the smartphone and the vehicle, and can be purchased for just over 15 euros. The spectrum of possibilities that arise when combining the car and the smartphone is unlimited, such as performing the diagnosis of the car by assuming the tasks performed by the car's On Board Unit (OBU), or sending the collected data to a platform where the diagnosis or maintenance of the system can be realized in order to detect possible faults, help you to save gas and reduce environment pollution, and notify you of your car's problems, among other features. The general objective pursued with this doctoral thesis is to help drivers to correct bad habits in their driving. To achieve this we promote the combination between smartphones and vehicular networks to design and develop a platform able to offer useful tips to achieve safer driving and greater fuel economy. It is well-known that intelligent driving can lead to lower fuel consumption, with the consequent positive impact on the environment. The proposal that has been carried out in this doctoral thesis begins with the data capture from the vehicles' OBD-II port and data analysis through the use of graphs, maps, and statistics, both, on the server itself and in the smartphone's application developed. We applied data mining techniques and neural networks to analyze, study and generate a classiffication on driving styles based on the analysis of the characteristics of each specific route used for testing. In a second phase, we demostrate the relationship between fuel consumption and driving style. To achieve that goal, the first thing that we had to realize was how to apply different algorithms for the instantaneous consumption calculation (this parameter cannot be obtained directly from the vehicle ECU). Later, we studied and analyzed all data that was collected from the drivers who shared their monitored data with the server. Although drivers do not recognize themselves as being in a state of anxiety while driving, they are more stressed than in any other daily activity, for example, when trying to stay in the right lane, keeping the car at a certain speed, and starting and stopping the vehicle. In general, drivers are more concentrated than they think, which causes an increase in the heart rate. Many factors influence heart rate while at rest, e.g. stress, medications, medical conditions, even genes play a role. In our study we also investigate how stress and the driving behavior influence the heart rate. So, in the last phase, we demostrate the correlation between heart rate and driving style, showing how the driving style can make the heart rate vary by 3 %.No hace mucho tiempo, tan sólo en la primera mitad en la década de los 90, cuando los teléfonos móviles aparecieron, eran grandes y caros, todo lo que se podía hacer con ellos era realizar llamadas telefónicas. Desde entonces los dispositivos móviles han experimentado un gran avance tecnológico, llevamos teléfonos inteligentes en el bolsillo con acceso a Internet, acelerómetros que calculan la aceleración instantánea, giroscopios que proporcionan información de orientación, diferentes conexiones inalámbricas como Bluetooth, y sobre todo, gran capacidad de computación. Por otro lado, la industria del automóvil ha evolucionado mucho durante los últimos 10 años. Uno de los avances más interesantes en el desarrollo de vehículos ha sido la conectividad, V2V, o comunicación vehículo a vehículo, permite a los automóviles comunicarse mediante Wi-Fi y compartir información sobre la velocidad del vehículo, la dirección de la ruta actual, el tráfico, así como las condiciones de la carretera y las condiciones ambientales. Por otra parte, el estándar On Board Diagnosis (OBD-II), disponible desde hace varios años, permite conectarnos de forma sencilla a la ECU (Electronic Control Unit) mediante un conector Bluetooth OBD-II. Este interfaz de conexión permite la conectividad entre el dispositivo móvil y el vehículo, se puede adquirir por poco más de 15 euros. El espectro de posibilidades que surgen al combinar el automóvil y el Smartphone es amplísimo, como por ejemplo realizar el diagnóstico del coche a través del móvil asumiendo las tareas que hace la unidad On Board Unit (OBU) del coche, o bien enviar los datos recogidos a una plataforma donde se pueda realizar el diagnóstico o mantenimiento del sistema, detectando posibles fallos puede ayudar a ahorrar en el consumo de combustible, notificar los problemas del coche en tiempo real, entre otras características. El objetivo general que se persigue con esta tesis doctoral es ayudar al conductor a corregir malos hábitos en su forma de conducción. Conseguimos esto mediante la combinación entre smartphones y las redes vehiculares, diseñamos y desarrollamos una plataforma capaz de ofrecer consejos útiles para conseguir una conducción más segura y un mayor ahorro de combustible. Es conocido que una conducción inteligente puede llevarnos a un menor consumo de combustible, con el consiguiente impacto positivo que ello conlleva sobre el medio ambiente. La propuesta que se ha llevado a cabo en esta tesis doctoral comienza con la obtención de los datos desde el OBD-II del coche y su presentación y análisis mediante el uso de gráficas, mapas, estadísticas, tanto en el propio servidor como en la aplicación móvil desarrollada para la obtención de datos recibidos desde la ECU. Se aplicaron técnicas de minería de datos y redes neuronales para analizar, estudiar y generar una clasificación sobre los estilos de conducción en base al análisis de las características de la vía sobre la que ha realizado la ruta. En una segunda fase se demostró la relación entre el consumo de combustible con el estilo de conducción, para ello lo primero que tuvimos que realizar fue aplicar diversos algoritmos para el cálculo del consumo instantáneo, este parámetro no es posible obtenerlo directamente de la ECU del vehículo. Posteriormente se realizó el estudio y el análisis de todos los datos que se recogieron de los conductores que se prestaron a la realización del estudio enviando los datos al servidor. Muchos factores influyen en la frecuencia cardíaca en reposo, por ejemplo, el estrés, los medicamentos, las condiciones médicas, incluso los genes tienen su influencia, el envejecimiento tiende a acelerarlo, y el ejercicio regular tiende a ralentizarlo. En nuestro estudio también investigamos cómo el estrés y el comportamiento en la conducción influyen en la frecuencia cardíaca. En la última fase vemos la correlación existente entre el riNo fa molt de temps, tan sols en la primera mitat en la dècada dels 90, quan els telèfons mòbils van aparéixer, eren grans i cars, tot el que es podia fer amb ells era realitzar telefonades. Des de llavors els dispositius mòbils han experimentat un gran avanç tecnològic, portem telèfons intel_ligents en la butxaca amb accés a Internet, acceleròmetres que calculen l'acceleració instantània, giroscopis que proporcionen informació d'orientació, diferents connexions sense _ls com Bluetooth, i sobretot gran capacitat de computació. D'altra banda, la indústria de l'automòbil ha evolucionat molt durant els últims 10 anys. Un dels avanços més interessants en el desenrotllament de vehicles ha sigut la connectivitat, V2V, o comunicació vehicle a vehicle, permet als automòbils comunicar-se per mitjà de la banda de Wi-Fi i compartir información sobre la velocitat del vehicle, la direcció de la ruta actual, les condicions del trà_c, així com l'estat de la carretera i les condicions ambientals. D'altra banda l'estàndard On Board Diagnosi (OBD-II), disponible des de fa diversos anys, permet connectar-nos de forma senzilla a l'ECU (Electronic Control Unit) per mitjà d'un connector Bluetooth OBD-II. Esta interfície de connexió permet la connectivitat entre el dispositiu mòbil i el vehicle, es pot adquirir per poc més de 15 euros. L'espectre de possibilitats que sorgixen al combinar l'automòbil i el Smartphone és il_limitat, com per exemple realitzar el diagnòstic del cotxe a través del móvil assumint les tasques que fa la unitat On Board Unit (OBU) del cotxe, o bé enviar les dades arreplegades a una plataforma on es puga realitzar el diagnòstic o manteniment del sistema, detectant possibles fallades, ajuda a estalviar en el consum de combustible, noti_car els problemes del cotxe en temps real, entre altres característiques. L'objectiu general que es perseguix amb esta tesi doctoral és ajudar al conductor a corregir mals hàbits en la seua forma de conducció. Aconseguim açò mitjançant de la combinació entre smartphones i les xarxes vehiculares, dissenyem i desenrotllem una plataforma capaç d'oferir consells útils per a aconseguir una conducció més segura i un major estalvi de combustible. És conegut que una conducció intel_ligent pot emportar-nos a un menor consum de combustible, amb el consegüent impacte positiu que això comporta sobre el medi ambient. La proposta que s'ha dut a terme en esta tesi doctoral comença amb l'obtenció de les dades des de l'OBD-II del cotxe i la seua presentació i anàlisi per mitjà de l'ús de grà_ques, mapes, estadístiques, tant en el propi servidor, com en l'aplicació mòbil desenrotllada per a l'obtenció de dades rebudes des de l'ECU. S'apliquen tècniques de mineria de dades i xarxes neuronals per a analitzar, estudiar i generar una classi_cació sobre els estils de conducció basant-se en l'anàlisi de les característiques de la via sobre la qual ha realitzat la ruta. En una segona fase es va a demostrar la relació entre el consum de combustible amb l'estil de conducció, per a això la primera cosa que vam haver de realizar va ser aplicar diversos algorismes per al càlcul del consum instantani, este paràmetre no és possible obtindre-ho directament de l'ECU del vehicle. Posteriorment es va realitzar l'estudi i l'anàlisi de totes les dades que es van arreplegar dels conductors que es van prestar a la realització de l'estudi enviant les dades al servidor. Molts factors in_ueixen en la freqüència cardíaca en repòs, per exemple, l'estrès, els medicaments, les condicions mèdiques, _ns i tot els gens tenen la seua in_uència, l'envelliment tendeix a accelerar-ho, i l'exercici regular tendeix a ralentir-ho. En el nostre estudi només estem interessats en com l'estrès i el comportament en la conducció in_ueixen en la freqüència cardíaca. En l'última fase vam veure la correlació existent entre el ritme cardíac i l'estil de conducciMeseguer Anastasio, JE. (2017). A novel framework to promote eco-driving through smartphone-vehicle integration [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/84287TESISCompendi

    Work-in-Progress: Augmented Reality System for Vehicle Health Diagnostics and Maintenance

    Get PDF
    This paper discusses undergraduate research to develop an augmented reality (AR) system for diagnostics and maintenance of the Joint Light Tactical Vehicle (JLTV) employed by U.S. Army and U.S. Marine Corps. The JLTV’s diagnostic information will be accessed by attaching a Bluetooth adaptor (Ford Reference Vehicle Interface) to JLTV’s On-board diagnostics (OBD) system. The proposed AR system will be developed for mobile devices (Android and iOS tablets and phones) and it communicates with the JLTV’s OBD via Bluetooth. The AR application will contain a simplistic user interface that reads diagnostic data from the JLTV, shows vehicle sensors, and allows users to create virtual dashboards to display various information. It will also contain interactive presentation and visualization of JLTV external and internal parts and 3D animations for diagnostic and maintenance. The AR application will consist of two modes: Standalone Mode and AR Mode. Standalone Mode does not require a real vehicle and it contains interactive 3D visualizations and animations for diagnostic and maintenance. The AR Mode requires the presence of a vehicle and projects instructions and animations to the vehicle components and parts under diagnosis and maintenance. This project contains several major tasks: 1) 3D modeling of the vehicle, including all internal and external parts to be displayed in the AR application, 2) 3D printing of the vehicles that only requires the external parts that requires conversion from the file format used in Task 1 and further optimization of the model for 3D printing, 3) software development in Unity that utilizes mobile devices and Vuforia to generate the AR application for vehicle maintenance and operation, and 4) preliminary research on software and information architecture to support efficient development of AR applications. This project is most relevant to the following ABET outcomes: 1) an ability to function on multidisciplinary teams and 2) an ability to communicate effectively, and 3) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice. This paper discusses the challenges and effective approaches in designing and executing undergraduate research projects that utilizing the latest computing and information technology for military applications, such as proper project scope, open source hardware and software, emulators for large scale equipment, 3D printing to reduce development complexity and facilitate rapid application development

    App-based feedback on safety to novice drivers: learning and monetary incentives

    Get PDF
    An over-proportionally large number of car crashes is caused by novice drivers. In a field experiment, we investigated whether and how car drivers who had recently obtained their driving license reacted to app-based feedback on their safety-relevant driving behavior (speeding, phone usage, cornering, acceleration and braking). Participants went through a pre-measurement phase during which they did not receive app-based feedback but driving behavior was recorded, a treatment phase during which they received app-based feedback, and a post-measurement phase during which they did not receive app-based feedback but driving behavior was recorded. Before the start of the treatment phase, we randomly assigned participants to two possible treatment groups. In addition to receiving app-based feedback, the participants of one group received monetary incentives to improve their safety-relevant driving behavior, while the participants of the other group did not. At the beginning and at the end of experiment, each participant had to fill out a questionnaire to elicit socio-economic and attitudinal information. We conducted regression analyses to identify socio-economic, attitudinal, and driving-behavior-related variables that explain safety-relevant driving behavior during the pre-measurement phase and the self-chosen intensity of app usage during the treatment phase. For the main objective of our study, we applied regression analyses to identify those variables that explain the potential effect of providing app-based feedback during the treatment phase on safety-relevant driving behavior. Last, we applied statistical tests of differences to identify self-selection and attrition biases in our field experiment. For a sample of 130 novice Austrian drivers, we found moderate improvements in safety-relevant driving skills due to app-based feedback. The improvements were more pronounced under the treatment with monetary incentives, and for participants choosing higher feedback intensities. Moreover, drivers who drove relatively safer before receiving app-based feedback used the app more intensely and, ceteris paribus, higher app use intensity led to improvements in safety-related driving skills. Last, we provide empirical evidence for both self-selection and attrition biases

    EYES : a novel overtaking assistance system for vehicular networks

    Get PDF
    Developments in the ITS area are received with great expectation by both consumers and industry. Despite their huge potential benefits, ITS solutions suffer from the slow pace of adoption by manufacturers. In this paper we propose EYES, an ITS system that aims at helping drivers in overtaking. The system autonomously creates a network of the devices running EYES, and provides drivers with a video feed from the vehicle located just ahead, thus presenting a better view of any vehicles coming from the opposite direction and the road ahead. This is specially useful when the front view of the driver is blocked by large vehicles, and thus the decision whether to overtake can be taken based on the visuals provided by the application. We have validated EYES, the proposed overtaking assistance system, in both indoor and realistic scenarios involving vehicular network, and preliminary results allow being optimistic about its effectiveness and applicability

    A literature review on connected vehicle use cases

    Get PDF
    Abstract. Explosive growth of Internet of Things and cloud computing technologies has enabled the creation of more connected vehicles. As vehicles are becoming more connected the use cases of surrounding them are ambiguous. The goal of this thesis is to perform a literature review to see what use cases there are for connected vehicles, and if it is possible to categorize these use case scenarios to clear categories. The results of this thesis indicate that there are three main use case categories for connected vehicles. First category was vehicle state monitoring which was used to monitor vehicle’s diagnostic data, to monitor emission control tampering and to determine if the vehicle has had a collision. Second category were about vehicle management where connected vehicle technologies were used to deliver smart vehicle information services and to perform remote updating of a vehicle. Third category was vehicle state controlling, where use case scenarios of this category created an adaptive suspension control application and battery usage optimization application by utilizing cloud backend. Safe route assisting application also utilized cloud technologies. As well as remote control of a vehicle and digital twin based driving assist system. These use case categories could also be differentiated by their communication method between the vehicle and remote backend. There are three main communication methods; active communication where remote backend only sent data to vehicle, passive communication in which the remote backend was passive receiver of the vehicle data and hybrid two-way communication between vehicle and remote backend. Primary contribution of this thesis was that framework for defining different connected vehicle use case scenarios was established. Primary limitation of this thesis was that low amount of publications were considered for review, and for future research it is recommended to expand this topic to include more publications for review and to also consider what are the common characteristics in each use case scenario

    IoT system for anytime/anywhere monitoring and control of vehicles’ parameters

    Get PDF
    This paper presents an IoT (Internet of Things) system designed to allow the monitoring and control of parameters of the users’ vehicles, anytime and anywhere in the world, through the Internet. The system prototype was developed and tested using an electric vehicle (EV) and the respective sensor systems. The main components of the proposed IoT system are: a Bluetooth Low Energy (BLE) intra-vehicular wireless sensor network (IVWSN); a mobile device that acts both as the vehicle’s gateway, connecting the IVWSN to the Internet, and as the vehicle’s human machine interface (HMI); an online server/database, based on Firebase; a client, which can be either a mobile device or a personal computer; and a residential wireless sensor network (WSN). The use of a wireless network to collect sensor data inside of the vehicle introduces some advantages when compared with conventional wired networks, whereas the inclusion of a residential WSNs in the proposed IoT architecture allows the provision of additional features, such as automatic control of the EV battery charging process. Experimental results are provided to assess the performance of the developed IVWSN and HMI.This work has been supported by COMPETE: POCI-01-0145- FEDER-007043 and FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013.info:eu-repo/semantics/publishedVersio

    Cyber-security internals of a Skoda Octavia vRS:a hands on approach

    Get PDF
    The convergence of information technology and vehicular technologies are a growing paradigm, allowing information to be sent by and to vehicles. This information can further be processed by the Electronic Control Unit (ECU) and the Controller Area Network (CAN) for in-vehicle communications or through a mobile phone or server for out-vehicle communication. Information sent by or to the vehicle can be life-critical (e.g. breaking, acceleration, cruise control, emergency communication, etc. . . ). As vehicular technology advances, in-vehicle networks are connected to external networks through 3 and 4G mobile networks, enabling manufacturer and customer monitoring of different aspects of the car. While these services provide valuable information, they also increase the attack surface of the vehicle, and can enable long and short range attacks. In this manuscript, we evaluate the security of the 2017 Skoda Octavia vRS 4x4. Both physical and remote attacks are considered, the key fob rolling code is successfully compromised, privacy attacks are demonstrated through the infotainment system, the Volkswagen Transport Protocol 2.0 is reverse engineered. Additionally, in-car attacks are highlighted and described, providing an overlook of potentially deadly threats by modifying ECU parameters and components enabling digital forensics investigation are identified
    corecore