2,259 research outputs found

    A Comparison of a Brain-Computer Interface and an Eye Tracker: Is There a More Appropriate Technology for Controlling a Virtual Keyboard in an ALS Patient?

    Get PDF
    The ability of people affected by amyotrophic lateral sclerosis (ALS), muscular dystrophy or spinal cord injuries to physically interact with the environment, is usually reduced. In some cases, these patients suffer from a syndrome known as locked-in syndrome (LIS), defined by the patient’s inability to make any move-ment but blinks and eye movements. Tech communication systems available for people in LIS are very limited, being those based on eye-tracking and brain-computer interface (BCI) the most useful for these patients. A comparative study between both technologies in an ALS patient is carried out: an eye tracker and a visual P300-based BCI. The purpose of the study presented in this paper is to show that the choice of the technology could depend on user´s preference. The evaluation of performance, workload and other subjective measures will allow us to determine the usability of the systems. The obtained results suggest that, even if for this patient the BCI technology is more appropriate, the technology should be always tested and adapted for each user.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Studies on the impact of assistive communication devices on the quality of life of patients with amyotrophic lateral sclerosis

    Get PDF
    Tese de doutoramento, Ciências Biomédicas (Neurociências), Universidade de Lisboa, Faculdade de Medicina, 2016Amyotrophic Lateral Sclerosis (ALS) is a progressive neuromuscular disease with rapid and generalized degeneration of motor neurons. Patients with ALS experiment a relentless decline in functions that affect performance of most activities of daily living (ADL), such as speaking, eating, walking or writing. For this reason, dependence on caregivers grows as the disease progresses. Management of the respiratory system is one of the main concerns of medical support, since respiratory failure is the most common cause of death in ALS. Due to increasing muscle weakness, most patients experience dramatic decrease of speech intelligibility and difficulties in using upper limbs (UL) for writing. There is growing evidence that mild cognitive impairment is common in ALS, but most patients are self-conscious of their difficulties in communicating and, in very severe stages, locked-in syndrome can occur. When no other resources than speech and writing are used to assist communication, patients are deprived of expressing needs or feelings, making decisions and keeping social relationships. Further, caregivers feel increased dependence due to difficulties in communication with others and get frustrated about difficulties in understanding partners’ needs. Support for communication is then very important to improve quality of life of both patients and caregivers; however, this has been poorly investigated in ALS. Assistive communication devices (ACD) can support patients by providing a diversity of tools for communication, as they progressively lose speech. ALS, in common with other degenerative conditions, introduces an additional challenge for the field of ACD: as the disease progresses, technologies must adapt to different conditions of the user. In early stages, patients may need speech synthesis in a mobile device, if dysarthria is one of the initial symptoms, or keyboard modifications, as weakness in UL increases. When upper limbs’ dysfunction is high, different input technologies may be adapted to capture voluntary control (for example, eye-tracking devices). Despite the enormous advances in the field of Assistive Technologies, in the last decade, difficulties in clinical support for the use of assistive communication devices (ACD) persist. Among the main reasons for these difficulties are lack of assessment tools to evaluate communication needs and determine proper input devices and to indicate changes over disease progression, and absence of clinical evidence that ACD has relevant impact on the quality of life of affected patients. For this set of reasons, support with communication tools is delayed to stages where patients are severely disabled. Often in these stages, patients face additional clinical complications and increased dependence on their caregivers’ decisions, which increase the difficulty in adaptation to new communication tools. This thesis addresses the role of assistive technologies in the quality of life of early-affected patients with ALS. Also, it includes the study of assessment tools that can improve longitudinal evaluation of communication needs of patients with ALS. We longitudinally evaluated a group of 30 patients with bulbar-onset ALS and 17 caregivers, during 2 to 29 months. Patients were assessed during their regular clinical appointments, in the Hospital de Santa Maria-Centro Hospitalar Lisboa_Norte. Evaluation of patients was based on validated instruments for assessing the Quality of Life (QoL) of patients and caregivers, and on methodologies for recording communication and measuring its performance (including speech, handwriting and typing). We tested the impact of early support with ACD on the QoL of patients with ALS, using a randomized, prospective, longitudinal design. Patients were able to learn and improve their skills to use communication tools based on electronic assistive devices. We found a positive impact of ACD in psychological and wellbeing domains of quality of life in patients, as well as in the support and psychological domains in caregivers. We also studied performance of communication (words per minute) using UL. Performance in handwriting may decline faster than performance in typing, supporting the idea that the use of touchscreen-based ACD supports communication for longer than handwriting. From longitudinal recordings of speech and typing activity we could observe that ACD can support tools to detect early markers of bulbar and UL dysfunction in ALS. Methodologies that were used in this research for recording and assessing function in communication can be replicated in the home environment and form part of the original contributions of this research. Implementation of remote monitoring tools in daily use of ACD, based on these methodologies, is discussed. Considering those patients who receive late support for the use of ACD, lack of time or daily support to learn how to control complex input devices may hinder its use. We developed a novel device to explore the detection and control of various residual movements, based on sensors of accelerometry, electromyography and force, as input signals for communication. The aim of this input device was to develop a tool to explore new communication channels in patients with generalized muscle weakness. This research contributed with novel tools from the Engineering field to the study of assistive communication in patients with ALS. Methodologies that were developed in this work can be further applied to the study of the impact of ACD in other neurodegenerative diseases that affect speech and motor control of UL

    Communication Impairment in ALS Patients Assessment and Treatment

    Get PDF

    BNCI systems as a potential assistive technology: ethical issues and participatory research in the BrainAble project

    Get PDF
    This paper highlights aspects related to current research and thinking about ethical issues in relation to Brain Computer Interface (BCI) and Brain-Neuronal Computer Interfaces (BNCI) research through the experience of one particular project, BrainAble, which is exploring and developing the potential of these technologies to enable people with complex disabilities to control computers. It describes how ethical practice has been developed both within the multidisciplinary research team and with participants. Results: The paper presents findings in which participants shared their views of the project prototypes, of the potential of BCI/BNCI systems as an assistive technology, and of their other possible applications. This draws attention to the importance of ethical practice in projects where high expectations of technologies, and representations of “ideal types” of disabled users may reinforce stereotypes or drown out participant “voices”. Conclusions: Ethical frameworks for research and development in emergent areas such as BCI/BNCI systems should be based on broad notions of a “duty of care” while being sufficiently flexible that researchers can adapt project procedures according to participant needs. They need to be frequently revisited, not only in the light of experience, but also to ensure they reflect new research findings and ever more complex and powerful technologies

    Supervised ANN vs. unsupervised SOM to classify EEG data for BCI: why can GMDH do better?

    Get PDF
    Construction of a system for measuring the brain activity (electroencephalogram (EEG)) and recognising thinking patterns comprises significant challenges, in addition to the noise and distortion present in any measuring technique. One of the most major applications of measuring and understanding EGG is the brain-computer interface (BCI) technology. In this paper, ANNs (feedforward back -prop and Self Organising Maps) for EEG data classification will be implemented and compared to abductive-based networks, namely GMDH (Group Methods of Data Handling) to show how GMDH can optimally (i.e. noise and accuracy) classify a given set of BCI’s EEG signals. It is shown that GMDH provides such improvements. In this endeavour, EGG classification based on GMDH will be researched for comprehensible classification without scarifying accuracy. GMDH is suggested to be used to optimally classify a given set of BCI’s EEG signals. The other areas related to BCI will also be addressed yet within the context of this purpose

    Providing a better life for Amyotrophic Lateral Sclerosis Patient or Spinal Cord Injured Patient by Artificial Neural Network or BrainGate

    Get PDF
    BrainGate is a brain implant system built and previously owned by Cyber kinetics, currently under development and in clinical trials, designed to help those who have lost control of their limbs, or other bodily functions, such as patients with amyotrophic lateral sclerosis (ALS) or spinal cord injury. The sensor, which is implanted into the brain, monitors brain activity in the patient and converts the intention of the user into computer commands. BrainGate is a path to a better way of life for severely motor-impaired individuals. Through years of advanced research, BrainGate enables these people with the ability to communicate, interact and function through thought. BrainGate's mission is to further the advancement of this life-changing technology to promote wider adoption to help impaired individuals communicate and interact with society. For instance, the Cyberkinetic’s BrainGate Neural Interface is currently the subject of a pilot clinical trial being conducted under an Investigational Device Exemption (IDE) from the FDA. The system is designed to restore functionality for a limited, immobile group of severely motor-impaired individuals. It is expected that people using the BrainGate System will employ a personal computer as the gateway to a range of self-directed activities. These activities may extend beyond typical computer functions to include the control of objects in the environment such as a telephone, a television and lights

    Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges

    Get PDF
    In recent years, new research has brought the field of EEG-based Brain-Computer Interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT). In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely,“Communication and Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user-machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human-computer interaction (HCI) to improve BCI usability, and the development of novel BCI technology including better EEG devices

    A review on brain computer interfaces: contemporary achievements and future goals towards movement restoration

    Get PDF
    Restoration of motor functions of patients with loss of mobility constitutes a yet unsolved medical problem, but also one of the most prominent research areas of neurosciences. Among suggested solutions, Brain Computer Interfaces have received much attention. BCI systems use electric, magnetic or metabolic brain signals to allow for control of external devices, such as wheelchairs, computers or neuroprosthetics, by disabled patients. Clinical applications includespinal cord injury, cerebrovascular accident rehabilitation, Amyotrophic Lateral Sclerosis patients. Various BCI systems are under re­search, facilitated by numerous measurement techniques including EEG, fMRI, MEG, nIRS and ECoG, each with its own advantages and disadvantages.Current research effort focuses on brain signal identification and extraction. Virtual Reality environments are also deployed for patient training. Wheelchair or robotic arm control has showed up as the first step towards actual mobility restoration. The next era of BCI research is envisaged to lie along the transmission of brain signals to systems that will control and restore movement of disabled patients via mechanical appendixes or directly to the muscle system by neurosurgical means
    • …
    corecore