8 research outputs found

    Developing a virtual reality environment for petrous bone surgery: a state-of-the-art review

    Get PDF
    The increasing power of computers has led to the development of sophisticated systems that aim to immerse the user in a virtual environment. The benefits of this type of approach to the training of physicians and surgeons are immediately apparent. Unfortunately the implementation of “virtual reality” (VR) surgical simulators has been restricted by both cost and technical limitations. The few successful systems use standardized scenarios, often derived from typical clinical data, to allow the rehearsal of procedures. In reality we would choose a system that allows us not only to practice typical cases but also to enter our own patient data and use it to define the virtual environment. In effect we want to re-write the scenario every time we use the environment and to ensure that its behavior exactly duplicates the behavior of the real tissue. If this can be achieved then VR systems can be used not only to train surgeons but also to rehearse individual procedures where variations in anatomy or pathology present specific surgical problems. The European Union has recently funded a multinational 3-year project (IERAPSI, Integrated Environment for Rehearsal and Planning of Surgical Interventions) to produce a virtual reality system for surgical training and for rehearsing individual procedures. Building the IERAPSI system will bring together a wide range of experts and combine the latest technologies to produce a true, patient specific virtual reality surgical simulator for petrous/temporal bone procedures. This article presents a review of the “state of the art” technologies currently available to construct a system of this type and an overview of the functionality and specifications such a system requires

    Robotically assisted eye surgery : a haptic master console

    Get PDF
    Vitreo-retinal surgery encompasses the surgical procedures performed on the vitreous humor and the retina. A procedure typically consists of the removal of the vitreous humor, the peeling of a membrane and/or the repair of a retinal detachment. Operations are performed with needle shaped instruments which enter the eye through surgeon made scleral openings. An instrument is moved by hand in four degrees of freedom (three rotations and one translation) through this opening. Two rotations (? and ? ) are for a lateral instrument tip movement. The other two DoFs (z and ?) are the translation and rotation along the instrument axis. Actuation of for example a forceps can be considered as a fifth DoF. Characteristically, the manipulation of delicate, micrometer range thick intraocular tissue is required. Today, eye surgery is performed with a maximum of two instruments simultaneously. The surgeon relies on visual feedback only, since instrument forces are below the human detection limit. A microscope provides the visual feedback. It forces the surgeon to work in a static and non ergonomic body posture. Although the surgeon’s proficiency improves throughout his career, hand tremor may become a problem around his mid-fifties. Robotically assisted surgery with a master-slave system enhances dexterity. The slave with instrument manipulators is placed over the eye. The surgeon controls the instrument manipulators via haptic interfaces at the master. The master and slave are connected by electronic hardware and control software. Implementation of tremor filtering in the control software and downscaling of the hand motion allow prolongation of the surgeon’s career. Furthermore, it becomes possible to do tasks like intraocular cannulation which can not be done by manually performed surgery. This thesis focusses on the master console. Eye surgery procedures are observed in the operating room of different hospitals to gain insight in the requirements for the master. The master console as designed has an adjustable frame, a 3D display and two haptic interfaces with a coarse adjustment arm each. The console is mounted at the head of the operating table and is combined with the slave. It is compact, easy to place and allows the surgeon to have a direct view on and a physical contact with the patient. Furthermore, it fits in today’s manual surgery arrangement. Each haptic interface has the same five degrees of freedom as the instrument inside the eye. Through these interfaces, the surgeon can feel the augmented instrument forces. Downscaling of the hand motion results in a more accurate instrument movement compared to manually performed surgery. Together with the visual feedback, it is like the surgeon grasps the instrument near the tip inside the eye. The similarity between hand motion and motion of the instrument tip as seen on the display results in an intuitive manipulation. Pre-adjustment of the interface is done via the coarse adjustment arm. Mode switching enables to control three or more instruments manipulators with only two interfaces. Two one degree of freedom master-slave systems with force feedback are built to derive the requirements for the haptic interface. Hardware in the loop testing provides valuable insights and shows the possibility of force feedback without the use of force sensors. Two five DoF haptic interfaces are realized for bimanual operation. Each DoF has a position encoder and a force feedback motor. A correct representation of the upscaled instrument forces is only possible if the disturbance forces are low. Actuators are therefore mounted to the fixed world or in the neighborhood of the pivoting point for a low contribution to the inertia. The use of direct drive for ' and and low geared, backdriveable transmissions for the other three DoFs gives a minimum of friction. Disturbance forces are further minimized by a proper cable layout and actuator-amplifier combinations without torque ripple. The similarity in DoFs between vitreo-retinal eye surgery and minimally invasive surgery (MIS) enables the system to be used for MIS as well. Experiments in combination with a slave robot for laparoscopic and thoracoscopic surgery show that an instrument can be manipulated in a comfortable and intuitive way. User experience of surgeons and others is utilized to improve the haptic interface further. A parallel instead of a serial actuation concept for the ' and DoFs reduces the inertia, eliminates the flexible cable connection between frame and motor and allows that the heat of the motor is transferred directly to the frame. A newly designed z-?? module combines the actuation and suspension of the hand held part of the interface and has a three times larger z range than in the first design of the haptic interface

    Development and evaluation of a novel method for in-situ medical image display

    Get PDF
    Three-dimensional (3D) medical imaging, including computed tomography (CT) and magnetic resonance (MR), and other modalities, has become a standard of care for diagnosis of disease and guidance of interventional procedures. As the technology to acquire larger, more magnificent, and more informative medical images advances, so too must the technology to display, interact with, and interpret these data.This dissertation concerns the development and evaluation of a novel method for interaction with 3D medical images called "grab-a-slice," which is a movable, tracked stereo display. It is the latest in a series of displays developed in our laboratory that we describe as in-situ, meaning that the displayed image is embedded in a physical 3D coordinate system. As the display is moved through space, a continuously updated tomographic slice of a 3D medical image is shown on the screen, corresponding to the position and orientation of the display. The act of manipulating the display through a "virtual patient" preserves the perception of 3D anatomic relationships in a way that is not possible with conventional, fixed displays. The further addition of stereo display capabilities permits augmentation of the tomographic image data with out-of-plane structures using 3D graphical methods.In this dissertation we describe the research and clinical motivations for such a device. We describe the technical development of grab-a-slice as well as psychophysical experiments to evaluate the hypothesized perceptual and cognitive benefits. We speculate on the advantages and limitations of the grab-a-slice display and propose future directions for its use in psychophysical research, clinical settings, and image analysis

    Characterising pattern asymmetry in pigmented skin lesions

    Get PDF
    Abstract. In clinical diagnosis of pigmented skin lesions asymmetric pigmentation is often indicative of melanoma. This paper describes a method and measures for characterizing lesion symmetry. The estimate of mirror symmetry is computed first for a number of axes at different degrees of rotation with respect to the lesion centre. The statistics of these estimates are the used to assess the overall symmetry. The method is applied to three different lesion representations showing the overall pigmentation, the pigmentation pattern, and the pattern of dermal melanin. The best measure is a 100% sensitive and 96% specific indicator of melanoma on a test set of 33 lesions, with a separate training set consisting of 66 lesions

    Augmented Reality and Health Informatics: A Study based on Bibliometric and Content Analysis of Scholarly Communication and Social Media

    Get PDF
    Healthcare outcomes have been shown to improve when technology is used as part of patient care. Health Informatics (HI) is a multidisciplinary study of the design, development, adoption, and application of IT-based innovations in healthcare services delivery, management, and planning. Augmented Reality (AR) is an emerging technology that enhances the user’s perception and interaction with the real world. This study aims to illuminate the intersection of the field of AR and HI. The domains of AR and HI by themselves are areas of significant research. However, there is a scarcity of research on augmented reality as it applies to health informatics. Given both scholarly research and social media communication having contributed to the domains of AR and HI, research methodologies of bibliometric and content analysis on scholarly research and social media communication were employed to investigate the salient features and research fronts of the field. The study used Scopus data (7360 scholarly publications) to identify the bibliometric features and to perform content analysis of the identified research. The Altmetric database (an aggregator of data sources) was used to determine the social media communication for this field. The findings from this study included Publication Volumes, Top Authors, Affiliations, Subject Areas and Geographical Locations from scholarly publications as well as from a social media perspective. The highest cited 200 documents were used to determine the research fronts in scholarly publications. Content Analysis techniques were employed on the publication abstracts as a secondary technique to determine the research themes of the field. The study found the research frontiers in the scholarly communication included emerging AR technologies such as tracking and computer vision along with Surgical and Learning applications. There was a commonality between social media and scholarly communication themes from an applications perspective. In addition, social media themes included applications of AR in Healthcare Delivery, Clinical Studies and Mental Disorders. Europe as a geographic region dominates the research field with 50% of the articles and North America and Asia tie for second with 20% each. Publication volumes show a steep upward slope indicating continued research. Social Media communication is still in its infancy in terms of data extraction, however aggregators like Altmetric are helping to enhance the outcomes. The findings from the study revealed that the frontier research in AR has made an impact in the surgical and learning applications of HI and has the potential for other applications as new technologies are adopted

    Augmented Reality Assistance for Surgical Interventions using Optical See-Through Head-Mounted Displays

    Get PDF
    Augmented Reality (AR) offers an interactive user experience via enhancing the real world environment with computer-generated visual cues and other perceptual information. It has been applied to different applications, e.g. manufacturing, entertainment and healthcare, through different AR media. An Optical See-Through Head-Mounted Display (OST-HMD) is a specialized hardware for AR, where the computer-generated graphics can be overlaid directly onto the user's normal vision via optical combiners. Using OST-HMD for surgical intervention has many potential perceptual advantages. As a novel concept, many technical and clinical challenges exist for OST-HMD-based AR to be clinically useful, which motivates the work presented in this thesis. From the technical aspects, we first investigate the display calibration of OST-HMD, which is an indispensable procedure to create accurate AR overlay. We propose various methods to reduce the user-related error, improve robustness of the calibration, and remodel the calibration as a 3D-3D registration problem. Secondly, we devise methods and develop hardware prototype to increase the user's visual acuity of both real and virtual content through OST-HMD, to aid them in tasks that require high visual acuity, e.g. dental procedures. Thirdly, we investigate the occlusion caused by the OST-HMD hardware, which limits the user's peripheral vision. We propose to use alternative indicators to remind the user of unattended environment motion. From the clinical perspective, we identified many clinical use cases where OST-HMD-based AR is potentially helpful, developed applications integrated with current clinical systems, and conducted proof-of-concept evaluations. We first present a "virtual monitor'' for image-guided surgery. It can replace real radiology monitors in the operating room with easier user control and more flexibility in positioning. We evaluated the "virtual monitor'' for simulated percutaneous spine procedures. Secondly, we developed ARssist, an application for the bedside assistant in robotic surgery. The assistant can see the robotic instruments and endoscope within the patient body with ARssist. We evaluated the efficiency, safety and ergonomics of the assistant during two typical tasks: instrument insertion and manipulation. The performance for inexperienced users is significantly improved with ARssist, and for experienced users, the system significantly enhanced their confidence level. Lastly, we developed ARAMIS, which utilizes real-time 3D reconstruction and visualization to aid the laparoscopic surgeon. It demonstrates the concept of "X-ray see-through'' surgery. Our preliminary evaluation validated the application via a peg transfer task, and also showed significant improvement in hand-eye coordination. Overall, we have demonstrated that OST-HMD based AR application provides ergonomic improvements, e.g. hand-eye coordination. In challenging situations or for novice users, the improvements in ergonomic factors lead to improvement in task performance. With continuous effort as a community, optical see-through augmented reality technology will be a useful interventional aid in the near future

    NASA SBIR abstracts of 1992, phase 1 projects

    Get PDF
    The objectives of 346 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1992 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 346, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1992 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    The design process of an autostereoscopic viewing interface for computer-assisted microsurgery

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore