467 research outputs found

    On-Board Electronic Control Systems of Future Automated Heavy Machinery

    Get PDF
    The level of automation and wireless communication has increased in heavy machinery recently. This requires utilizing new devices and communication solutions in heavy machinery applications which involve demanding operating conditions and challenging life-cycle management. Therefore, the applied devices have to be robust and hardware architectures flexible, consisting of generic modules. In research and development projects devices that have various communication interfaces and insufficient mechanical and electrical robustness need to be applied. Although this thesis has its main focus on machines utilized as research platforms, many of the challenges are similar with commercial machines.The applicability of typical solutions for data transfer is discussed. Controller area network with a standardized higher level protocol is proposed to be applied where data signalling rates above 1 Mb/s are not required. The main benefits are the availability of robust, generic devices and well-established software tools for configuration management. Ethernet can be utilized to network equipment with high data rates, typically used for perception. Although deterministic industrial Ethernet protocols would fulfil most requirements, the conventional internet protocol suite is likely to be applied due to device availability.Sometimes sensors and other devices without a suitable communication interface need to be applied. In addition, device-related real-time processing or accurate synchronization of hardware signals may be required. A small circuit board with a microcontroller can be utilized as a generic embedded module for building robust, small and cost-efficient prototype devices that have a controller area network interface. Although various microcontroller boards are commercially available, designing one for heavy machinery applications, in particular, has benefits in robustness, size, interfaces, and flexible software development. The design of such a generic embedded module is presented.The device-specific challenges of building an automated machine are discussed. Unexpected switch-off of embedded computers has to be prevented by the control system to avoid file system errors. Moreover, the control system has to protect the batteries against deep discharge when the engine is not running. With many devices, protective enclosures with heating or cooling are required.The electronic control systems of two automated machines utilized as research platforms are presented and discussed as examples. The hardware architectures of the control systems are presented, following the proposed communication solutions as far as is feasible. Several applications of the generic embedded module within the control systems are described. Several research topics have been covered utilizing the automated machines. In this thesis, a cost-efficient operator-assisting functionality of an excavator is presented and discussed in detail.The results of this thesis give not only research institutes but also machine manufacturers and their subcontractors an opportunity to streamline the prototyping of automated heavy machinery

    New Perspectives on Electric Vehicles

    Get PDF
    Modern transportation systems have adverse effects on the climate, emitting greenhouse gases and polluting the air. As such, new modes of non-polluting transportation, including electric vehicles and plug-in hybrids, are a major focus of current research and development. This book explores the future of transportation. It is divided into four sections: “Electric Vehicles Infrastructures,” “Architectures of the Electric Vehicles,” “Technologies of the Electric Vehicles,” and “Propulsion Systems.” The chapter authors share their research experience regarding the main barriers in electric vehicle implementation, their thoughts on electric vehicle modelling and control, and network communication challenges

    An Overview of CAN-BUS Development, Utilization, and Future Potential in Serial Network Messaging for Off-Road Mobile Equipment

    Get PDF
    A Controller Area Network (CAN) is a serial network information technology that facilitates the passing of information between Electronic Control Units (ECUs, also known as nodes). Developed by BOSCH in 1986 to circumvent challenges in harness-connected systems and provide improved message handling in automobiles, the CAN interface allows broadcast communication between all connected ECUs within a vehicle’s integrated electronic system through distributed control and decentralized measuring equipment. Since the early uses of CAN in car engine management, improvements in bitrate, bandwidth, and standardization protocols (such as ISO 11898 and SAE J1939) have led to CAN utilization in various industry applications, such as factory automation, aviation, off-highway vehicles, and telematics. Alternative wired and wireless technologies have been used to connect and network with CAN-BUS (such as Ethernet, Bluetooth, Wi-Fi, ZigBee, etc.), further expanding the diversity of applications in which the serial network is employed. In this chapter, the past, present, and prospective future developments of CAN technology, with focused attention on applications in the agricultural and off-road sectors are broadly examined. CAN technology fundamentals, standards creation, modern day uses, and potential functionalities and challenges specific to CAN in the wake of precision agriculture and smart farming are discussed in detail

    Space station automation of common module power management and distribution, volume 2

    Get PDF
    The new Space Station Module Power Management and Distribution System (SSM/PMAD) testbed automation system is described. The subjects discussed include testbed 120 volt dc star bus configuration and operation, SSM/PMAD automation system architecture, fault recovery and management expert system (FRAMES) rules english representation, the SSM/PMAD user interface, and the SSM/PMAD future direction. Several appendices are presented and include the following: SSM/PMAD interface user manual version 1.0, SSM/PMAD lowest level processor (LLP) reference, SSM/PMAD technical reference version 1.0, SSM/PMAD LLP visual control logic representation's (VCLR's), SSM/PMAD LLP/FRAMES interface control document (ICD) , and SSM/PMAD LLP switchgear interface controller (SIC) ICD

    Assessment of the cutting performance of a robot mower using custom built software.

    Get PDF
    Before the introduction of positioning technologies in agriculture practices such as global navigation satellite systems (GNSS), data collection and management were time-consuming and labor-intensive tasks. Today, due to the introduction of advanced technologies, precise information on the performance of agricultural machines, and smaller autonomous vehicles such as robot mowers, can be collected in a relatively short time. The aim of this work was to track the performance of a robot mower in various turfgrass areas of an equal number of square meters but with four dierent shapes by using real-time kinematic (RTK)-GNSS devices, and to easily extract data by a custom built software capable of calculating the distance travelled by the robot mower, the forward speed, the cutting area, and the number of intersections of the trajectories. These data were then analyzed in order to provide useful functioning information for manufacturers, entrepreneurs, and practitioners. The path planning of the robot mower was random and the turfgrass area for each of the four shapes was 135 m2 without obstacles. The distance travelled by the robot mower, the mean forward speed, and the intersections of the trajectories were aected by the interaction between the time of cutting and the shape of the turfgrass. For all the dierent shapes, the whole turfgrass area was completely cut after two hours of mowing. The cutting eciency decreased by increasing the time, as a consequence of the increase in overlaps. After 75 minutes of cutting, the eciency was about 35% in all the turfgrass areas shapes, thus indicating a high level of overlapping

    Parallélisation massive des algorithmes de branchement

    Get PDF
    Les problèmes d'optimisation et de recherche sont souvent NP-complets et des techniques de force brute doivent généralement être mises en œuvre pour trouver des solutions exactes. Des problèmes tels que le regroupement de gènes en bio-informatique ou la recherche de routes optimales dans les réseaux de distribution peuvent être résolus en temps exponentiel à l'aide de stratégies de branchement récursif. Néanmoins, ces algorithmes deviennent peu pratiques au-delà de certaines tailles d'instances en raison du grand nombre de scénarios à explorer, pour lesquels des techniques de parallélisation sont nécessaires pour améliorer les performances. Dans des travaux antérieurs, des techniques centralisées et décentralisées ont été mises en œuvre afin d'augmenter le parallélisme des algorithmes de branchement tout en essayant de réduire les coûts de communication, qui jouent un rôle important dans les implémentations massivement parallèles en raison des messages passant entre les processus. Ainsi, notre travail consiste à développer une bibliothèque entièrement générique en C++, nommée GemPBA, pour accélérer presque tous les algorithmes de branchement avec une parallélisation massive, ainsi que le développement d'un outil novateur et simpliste d'équilibrage de charge dynamique pour réduire le nombre de messages transmis en envoyant les tâches prioritaires en premier. Notre approche utilise une stratégie hybride centralisée-décentralisée, qui fait appel à un processus central chargé d'attribuer les rôles des travailleurs par des messages de quelques bits, telles que les tâches n'ont pas besoin de passer par un processeur central. De plus, un processeur en fonctionnement génère de nouvelles tâches si et seulement s'il y a des processeurs disponibles pour les recevoir, garantissant ainsi leur transfert, ce qui réduit considérablement les coûts de communication. Nous avons réalisé nos expériences sur le problème de la couverture minimale de sommets, qui a montré des résultats remarquables, étant capable de résoudre même les graphes DIMACS les plus difficiles avec un simple algorithme MVC.Abstract: Optimization and search problems are often NP-complete, and brute-force techniques must typically be implemented to find exact solutions. Problems such as clustering genes in bioinformatics or finding optimal routes in delivery networks can be solved in exponential-time using recursive branching strategies. Nevertheless, these algorithms become impractical above certain instance sizes due to the large number of scenarios that need to be explored, for which parallelization techniques are necessary to improve the performance. In previous works, centralized and decentralized techniques have been implemented aiming to scale up parallelism on branching algorithms whilst attempting to reduce communication overhead, which plays a significant role in massively parallel implementations due to the messages passing across processes. Thus, our work consists of the development of a fully generic library in C++, named GemPBA, to speed up almost any branching algorithms with massive parallelization, along with the development of a novel and simplistic Dynamic Load Balancing tool to reduce the number of passed messages by sending high priority tasks first. Our approach uses a hybrid centralized-decentralized strategy, which makes use of a center process in charge of assigning worker roles by messages of a few bits of size, such that tasks do not need to pass through a center processor. Also, a working processor will spawn new tasks if and only if there are available processors to receive them, thus, guaranteeing its transfer, and thereby the communication overhead is notably decreased. We performed our experiments on the Minimum Vertex Cover problem, which showed remarkable results, being capable of solving even the toughest DIMACS graphs with a simple MVC algorithm

    Research and development of an intelligent AGV-based material handling system for industrial applications

    Get PDF
    The use of autonomous robots in industrial applications is growing in popularity and possesses the following advantages: cost effectiveness, job efficiency and safety aspects. Despite the advantages, the major drawback to using autonomous robots is the cost involved to acquire such robots. It is the aim of GMSA to develop a low cost AGV capable of performing material handling in an industrial environment. Collective autonomous robots are often used to perform tasks, that is, more than one working together to achieve a common goal. The intelligent controller, responsible for establishing coordination between the individual robots, plays a key role in managing the tasks of each robot to achieve the common goal. This dissertation addresses the development of an AGV capable of such functionality. Key research areas include: the development of an autonomous coupling system, integration of key safety devices and the development of an intelligent control strategy that can be used to govern the operation of multiple AGVs in an area
    • …
    corecore