44,203 research outputs found

    A Survey of Controller Placement Problem in Software Defined Networks

    Full text link
    Software Defined Network (SDN) is an emerging network paradigm which provides a centralized view of the network by decoupling the network control plane from the data plane. This strategy of maintaining a global view of the network optimizes resource management. However, the implementation of SDN using a single physical controller lead to issues of scalability and robustness. A physically distributed but logically centralized SDN controller architecture promises to resolve both these issues. Distributed SDN along with its benefits brings along the problem of the number of controllers required and their placement in the network. This problem is referred to as the controller placement problem (CPP) and this paper is mainly concerned with the CPP solution techniques. The paper formally defines CPP, gives a comprehensive review of the various performance metrics and characteristics of the available CPP solutions. Finally, we point out the existing literature gap and discuss the future research direction in this domain

    Data and Spectrum Trading Policies in a Trusted Cognitive Dynamic Network

    Full text link
    Future wireless networks will progressively displace service provisioning towards the edge to accommodate increasing growth in traffic. This paradigm shift calls for smart policies to efficiently share network resources and ensure service delivery. In this paper, we consider a cognitive dynamic network architecture (CDNA) where primary users (PUs) are rewarded for sharing their connectivities and acting as access points for secondary users (SUs). CDNA creates opportunities for capacity increase by network-wide harvesting of unused data plans and spectrum from different operators. Different policies for data and spectrum trading are presented based on centralized, hybrid and distributed schemes involving primary operator (PO), secondary operator (SO) and their respective end users. In these schemes, PO and SO progressively delegate trading to their end users and adopt more flexible cooperation agreements to reduce computational time and track available resources dynamically. A novel matching-with-pricing algorithm is presented to enable self-organized SU-PU associations, channel allocation and pricing for data and spectrum with low computational complexity. Since connectivity is provided by the actual users, the success of the underlying collaborative market relies on the trustworthiness of the connections. A behavioral-based access control mechanism is developed to incentivize/penalize honest/dishonest behavior and create a trusted collaborative network. Numerical results show that the computational time of the hybrid scheme is one order of magnitude faster than the benchmark centralized scheme and that the matching algorithm reconfigures the network up to three orders of magnitude faster than in the centralized scheme.Comment: 15 pages, 12 figures. A version of this paper has been published in IEEE/ACM Transactions on Networking, 201

    Economic Optimal Operation of Community Energy Storage Systems in Competitive Energy Markets

    Full text link
    Distributed, controllable energy storage devices offer several benefits to electric power system operation. Three such benefits include reducing peak load, providing standby power, and enhancing power quality. These benefits, however, are only realized during peak load or during an outage, events that are infrequent. This paper presents a means of realizing additional benefits by taking advantage of the fluctuating costs of energy in competitive energy markets. An algorithm for optimal charge/discharge scheduling of community energy storage (CES) devices as well as an analysis of several of the key drivers of the optimization are discussed.Comment: 17 Pages, submitted to Applied Energ

    Design of Virtualized Network Coding Functionality for Reliability Control of Communication Services over Satellite

    Full text link
    Network coding (NC) is a novel coding technology that can be seen as a generalization of classic point-to-point coding. As with classic coding, both information theoretical and algebraic views bring different and complementary insights of NC benefits and corresponding tradeoffs. However, the multi-user nature of NC and its inherent applicability across all layers of the protocol stack, call for novel design approaches towards efficient practical implementation of this technology. In this paper, we present a possible way forward to the design of NC as a virtual network functionality offered to the communication service designer. Specifically, we propose the integration of NC and Network Function Virtualization (NFV) architectural designs. The integration is realized as a toolbox of NC design domains that the service designer can use for flow engineering. Our proposed design framework combines network protocol-driven design and system modular-driven design approaches. In particular, the adaptive choice of the network codes and its use for a specific service can then be tailored and optimized depending on the ultimate service intent and underlying (virtualized) system or network. We work out a complete use case where we design geo-network coding, an application of NC for which coding rate is optimized using databases of geo-location information towards an energy-efficient use of resources. Our numerical results highlight the benefits of both the proposed NC design framework and the specific application

    Throughput Optimal Decentralized Scheduling of Multi-Hop Networks with End-to-End Deadline Constraints: II Wireless Networks with Interference

    Full text link
    Consider a multihop wireless network serving multiple flows in which wireless link interference constraints are described by a link interference graph. For such a network, we design routing-scheduling policies that maximize the end-to-end timely throughput of the network. Timely throughput of a flow ff is defined as the average rate at which packets of flow ff reach their destination node dfd_f within their deadline. Our policy has several surprising characteristics. Firstly, we show that the optimal routing-scheduling decision for an individual packet that is present at a wireless node i∈Vi\in V is solely a function of its location, and "age". Thus, a wireless node ii does not require the knowledge of the "global" network state in order to maximize the timely throughput. We notice that in comparison, under the backpressure routing policy, a node ii requires only the knowledge of its neighbours queue lengths in order to guarantee maximal stability, and hence is decentralized. The key difference arises due to the fact that in our set-up the packets loose their utility once their "age" has crossed their deadline, thus making the task of optimizing timely throughput much more challenging than that of ensuring network stability. Of course, due to this key difference, the decision process involved in maximizing the timely throughput is also much more complex than that involved in ensuring network-wide queue stabilization. In view of this, our results are somewhat surprising

    HELPER: Heterogeneous Efficient Low Power Radio for Enabling Ad Hoc Emergency Public Safety Networks

    Full text link
    Natural and man-made disasters have been causing destruction and distress to humanity all over the world. In these scenarios, communication infrastructures are the most affected entities making emergency response operations extremely challenging. This invokes a need to equip the affected people and the emergency responders with the ability to rapidly set up and use independent means of communication. Therefore, in this work, we present a complete end-to-end solution that can connect survivors of a disaster with each other and the authorities using a completely self-sufficient ad hoc network that can be setup rapidly. Accordingly, we develop a Heterogeneous Efficient Low Power Radio (HELPER) that acts as an access point for end-users to connect using custom website application. These HELPERs then coordinate with each other to form a LoRa based ad hoc network. To this end, we propose a novel cross-layer optimized distributed energy-efficient routing (SEEK) algorithm that aims to maximize the network lifetime. The HELPER is prototyped using WiFi enabled Raspberry Pi and LoRa module that is configured to run using Li-ion batteries. We implement the required cross-layer protocol stack along with the SEEK routing algorithm. We have conducted demonstrations to establish the feasibility of exchanging of text messages over the HELPER network, live map updates, ability to send distress messages to authorities. Emergency responders can leverage this technology to remotely monitor the connectivity of the affected area and alert users of imminent dangers. SEEK algorithm was shown to outperform a greedy geographical routing algorithm implemented on HELPER testbed by up to 53 % in terms of network lifetime and up to 28 % in terms of throughput. Overall, we hope this technology will become instrumental in improving the efficiency and effectiveness of public safety activities

    A Survey on Low Latency Towards 5G: RAN, Core Network and Caching Solutions

    Full text link
    The fifth generation (5G) wireless network technology is to be standardized by 2020, where main goals are to improve capacity, reliability, and energy efficiency, while reducing latency and massively increasing connection density. An integral part of 5G is the capability to transmit touch perception type real-time communication empowered by applicable robotics and haptics equipment at the network edge. In this regard, we need drastic changes in network architecture including core and radio access network (RAN) for achieving end-to-end latency on the order of 1 ms. In this paper, we present a detailed survey on the emerging technologies to achieve low latency communications considering three different solution domains: RAN, core network, and caching. We also present a general overview of 5G cellular networks composed of software defined network (SDN), network function virtualization (NFV), caching, and mobile edge computing (MEC) capable of meeting latency and other 5G requirements.Comment: Accepted in IEEE Communications Surveys and Tutorial

    Self-organized Low-power IoT Networks: A Distributed Learning Approach

    Full text link
    Enabling large-scale energy-efficient Internet-of-things (IoT) connectivity is an essential step towards realization of networked society. While legacy wide-area wireless systems are highly dependent on network-side coordination, the level of consumed energy in signaling, as well as the expected increase in the number of IoT devices, makes such centralized approaches infeasible in future. Here, we address this problem by self-coordination for IoT networks through learning from past communications. To this end, we first study low-complexity distributed learning approaches applicable in IoT communications. Then, we present a learning solution to adapt communication parameters of devices to the environment for maximizing energy efficiency and reliability in data transmissions. Furthermore, leveraging tools from stochastic geometry, we evaluate the performance of proposed distributed learning solution against the centralized coordination. Finally, we analyze the interplay amongst energy efficiency, reliability of communications against noise and interference over data channel, and reliability against adversarial interference over data and feedback channels. The simulation results indicate that compared to the state of the art approaches, both energy efficiency and reliability in IoT communications could be significantly improved using the proposed learning approach. These promising results, which are achieved using lightweight learning, make our solution favorable in many low-cost low-power IoT applications.Comment: IEEE Globecom 201

    Exploiting the power of multiplicity: a holistic survey of network-layer multipath

    Full text link
    The Internet is inherently a multipath network---for an underlying network with only a single path connecting various nodes would have been debilitatingly fragile. Unfortunately, traditional Internet technologies have been designed around the restrictive assumption of a single working path between a source and a destination. The lack of native multipath support constrains network performance even as the underlying network is richly connected and has redundant multiple paths. Computer networks can exploit the power of multiplicity to unlock the inherent redundancy of the Internet. This opens up a new vista of opportunities promising increased throughput (through concurrent usage of multiple paths) and increased reliability and fault-tolerance (through the use of multiple paths in backup/ redundant arrangements). There are many emerging trends in networking that signify that the Internet's future will be unmistakably multipath, including the use of multipath technology in datacenter computing; multi-interface, multi-channel, and multi-antenna trends in wireless; ubiquity of mobile devices that are multi-homed with heterogeneous access networks; and the development and standardization of multipath transport protocols such as MP-TCP. The aim of this paper is to provide a comprehensive survey of the literature on network-layer multipath solutions. We will present a detailed investigation of two important design issues, namely the control plane problem of how to compute and select the routes, and the data plane problem of how to split the flow on the computed paths. The main contribution of this paper is a systematic articulation of the main design issues in network-layer multipath routing along with a broad-ranging survey of the vast literature on network-layer multipathing. We also highlight open issues and identify directions for future work

    Reconfigurable Wireless Networks

    Full text link
    Driven by the advent of sophisticated and ubiquitous applications, and the ever-growing need for information, wireless networks are without a doubt steadily evolving into profoundly more complex and dynamic systems. The user demands are progressively rampant, while application requirements continue to expand in both range and diversity. Future wireless networks, therefore, must be equipped with the ability to handle numerous, albeit challenging requirements. Network reconfiguration, considered as a prominent network paradigm, is envisioned to play a key role in leveraging future network performance and considerably advancing current user experiences. This paper presents a comprehensive overview of reconfigurable wireless networks and an in-depth analysis of reconfiguration at all layers of the protocol stack. Such networks characteristically possess the ability to reconfigure and adapt their hardware and software components and architectures, thus enabling flexible delivery of broad services, as well as sustaining robust operation under highly dynamic conditions. The paper offers a unifying framework for research in reconfigurable wireless networks. This should provide the reader with a holistic view of concepts, methods, and strategies in reconfigurable wireless networks. Focus is given to reconfigurable systems in relatively new and emerging research areas such as cognitive radio networks, cross-layer reconfiguration and software-defined networks. In addition, modern networks have to be intelligent and capable of self-organization. Thus, this paper discusses the concept of network intelligence as a means to enable reconfiguration in highly complex and dynamic networks. Finally, the paper is supported with several examples and case studies showing the tremendous impact of reconfiguration on wireless networks.Comment: 28 pages, 26 figures; Submitted to the Proceedings of the IEEE (a special issue on Reconfigurable Systems
    • …
    corecore