2,761 research outputs found

    Location models in the public sector

    Get PDF
    The past four decades have witnessed an explosive growth in the field of networkbased facility location modeling. This is not at all surprising since location policy is one of the most profitable areas of applied systems analysis in regional science and ample theoretical and applied challenges are offered. Location-allocation models seek the location of facilities and/or services (e.g., schools, hospitals, and warehouses) so as to optimize one or several objectives generally related to the efficiency of the system or to the allocation of resources. This paper concerns the location of facilities or services in discrete space or networks, that are related to the public sector, such as emergency services (ambulances, fire stations, and police units), school systems and postal facilities. The paper is structured as follows: first, we will focus on public facility location models that use some type of coverage criterion, with special emphasis in emergency services. The second section will examine models based on the P-Median problem and some of the issues faced by planners when implementing this formulation in real world locational decisions. Finally, the last section will examine new trends in public sector facility location modeling.Location analysis, public facilities, covering models

    Workload Equity in Vehicle Routing Problems: A Survey and Analysis

    Full text link
    Over the past two decades, equity aspects have been considered in a growing number of models and methods for vehicle routing problems (VRPs). Equity concerns most often relate to fairly allocating workloads and to balancing the utilization of resources, and many practical applications have been reported in the literature. However, there has been only limited discussion about how workload equity should be modeled in VRPs, and various measures for optimizing such objectives have been proposed and implemented without a critical evaluation of their respective merits and consequences. This article addresses this gap with an analysis of classical and alternative equity functions for biobjective VRP models. In our survey, we review and categorize the existing literature on equitable VRPs. In the analysis, we identify a set of axiomatic properties that an ideal equity measure should satisfy, collect six common measures, and point out important connections between their properties and those of the resulting Pareto-optimal solutions. To gauge the extent of these implications, we also conduct a numerical study on small biobjective VRP instances solvable to optimality. Our study reveals two undesirable consequences when optimizing equity with nonmonotonic functions: Pareto-optimal solutions can consist of non-TSP-optimal tours, and even if all tours are TSP optimal, Pareto-optimal solutions can be workload inconsistent, i.e. composed of tours whose workloads are all equal to or longer than those of other Pareto-optimal solutions. We show that the extent of these phenomena should not be underestimated. The results of our biobjective analysis are valid also for weighted sum, constraint-based, or single-objective models. Based on this analysis, we conclude that monotonic equity functions are more appropriate for certain types of VRP models, and suggest promising avenues for further research.Comment: Accepted Manuscrip

    A concise guide to existing and emerging vehicle routing problem variants

    Get PDF
    Vehicle routing problems have been the focus of extensive research over the past sixty years, driven by their economic importance and their theoretical interest. The diversity of applications has motivated the study of a myriad of problem variants with different attributes. In this article, we provide a concise overview of existing and emerging problem variants. Models are typically refined along three lines: considering more relevant objectives and performance metrics, integrating vehicle routing evaluations with other tactical decisions, and capturing fine-grained yet essential aspects of modern supply chains. We organize the main problem attributes within this structured framework. We discuss recent research directions and pinpoint current shortcomings, recent successes, and emerging challenges

    Latency-aware cost optimization of the service infrastructure placement in 5G networks

    Get PDF
    Under 5G use case scenarios latency is a main challenge that must be addressed, since mission critical environments are mostly delay sensitive. To achieve this goal, the service infrastructure placement optimization is needed in the interest of minimizing the delays in the service access layer. To solve this problem, this paper mathematically models the placement problem in a Fog Computing/NFV environment as a Mixed-Integer Linear Programming problem and proposes a heuristic-based solution considering 5G mobile network requirements. As a practical result, an application was developed to achieve usability and flexibility while ensuring operational applicability of the proposed methods.Postprint (published version

    Facility Location Problem of Beverage Distribution Considering Time Window and Land Use Plan Using GIS

    Get PDF
    As the boundaries and population of urban areas expand, beverage distributors may seek to expand the capacity in their distribution centers. As a result, they may need to add new locations or increase the utilization of their existing center. This paper investigates the facility location problem through network space, considering traversable truck roads, thereby providing a strategic decision for identifying a depot location in consideration of vehicle routings from a real application. For the analysis, a geospatial tool, which is embedded in the commercial software ArcMapÂź, was used for routing and calibrating the model. Ten candidates from commercial and industrial zones in the cities of Fargo, West Fargo, and Moorhead were considered for future distribution centers. The candidate locations were analyzed to determine which site minimizes the total transportation costs and travel miles in consideration of time window, vehicle capacity, heterogeneous vehicle types, land use plan, and hours-of-service. Most attractive candidates are close to the intersections of major highways. From the analysis, the study recommends locating a distribution center at three alternatives based on the average ranking method. This study can be used by distributors as they consider new locations and extra depots to support strategic planning to deal with mid-term and long-term growth of demand in beverage markets. This study provides a ready-to-use example of how to adopt state-of-the-art spatial technology and operations research using Geographic Information Systems (GIS), and bring it to state-of-practice

    United Nations Development Assistance Framework for Kenya

    Get PDF
    The United Nations Development Assistance Framework (2014-2018) for Kenya is an expression of the UN's commitment to support the Kenyan people in their self-articulated development aspirations. This UNDAF has been developed according to the principles of UN Delivering as One (DaO), aimed at ensuring Government ownership, demonstrated through UNDAF's full alignment to Government priorities and planning cycles, as well as internal coherence among UN agencies and programmes operating in Kenya. The UNDAF narrative includes five recommended sections: Introduction and Country Context, UNDAF Results, Resource Estimates, Implementation Arrangements, and Monitoring and Evaluation as well as a Results and Resources Annex. Developed under the leadership of the Government, the UNDAF reflects the efforts of all UN agencies working in Kenya and is shaped by the five UNDG programming principles: Human Rights-based approach, gender equality, environmental sustainability, capacity development, and results based management. The UNDAF working groups have developed a truly broad-based Results Framework, in collaboration with Civil Society, donors and other partners. The UNDAF has four Strategic Results Areas: 1) Transformational Governance encompassing Policy and Institutional Frameworks; Democratic Participation and Human Rights; Devolution and Accountability; and Evidence-based Decision-making, 2) Human Capital Development comprised of Education and Learning; Health, including Water, Sanitation and Hygiene (WASH), Environmental Preservation, Food Availability and Nutrition; Multi-sectoral HIV and AIDS Response; and Social Protection, 3) Inclusive and Sustainable Economic Growth, with Improving the Business Environment; Strengthening Productive Sectors and Trade; and Promoting Job Creation, Skills Development and Improved Working Conditions, and 4) Environmental Sustainability, Land Management and Human Security including Policy and Legal Framework Development; and Peace, Community Security and Resilience. The UNDAF Results Areas are aligned with the three Pillars (Political, Social and Economic) of the Government's Vision 2030 transformational agenda

    Models and algorithms for trauma network design.

    Get PDF
    Trauma continues to be the leading cause of death and disability in the US for people aged 44 and under, making it a major public health problem. The geographical maldistribution of Trauma Centers (TCs), and the resulting higher access time to the nearest TC, has been shown to impact trauma patient safety and increase disability or mortality. State governments often design a trauma network to provide prompt and definitive care to their citizens. However, this process is mainly manual and experience-based and often leads to a suboptimal network in terms of patient safety and resource utilization. This dissertation fills important voids in this domain and adds much-needed realism to develop insights that trauma decision-makers can use to design their trauma network. In this dissertation, we develop multiple optimization-based trauma network design approaches focusing minimizing mistriages and, in some cases, ensuring equity in care among regions. To mimic trauma care in practice, several realistic features are considered in our approach, which include the consideration of: (i) both severely and non-severely injured trauma patients and associated mistriages, (ii) intermediate trauma centers (ITCs) along with major trauma centers (MTCs), (iii) three dominant criteria for destination determination, and (iv) mistriages in on-scene clinical assessment of injuries. Our first contribution (Chapter 2) proposes the Trauma Center Location Problem (TCLP) that determines the optimal number and location of major trauma centers (MTCs) to improve patient safety. The bi-objective optimization model for TCLP explicitly considers both types of patients (severe and non-severe) and associated mistriages (specifically, system-related under- and over-triages) as a surrogate for patient safety. These mistriages are estimated using our proposed notional tasking algorithm that attempts to mimic the EMS on-scene decision of destination hospital and transportation mode. We develop a heuristic based on Particle Swarm Optimization framework to efficiently solve realistic problem sizes. We illustrate our approach using 2012 data from the state of OH and show that an optimized network for the state could achieve 31.5% improvement in patient safety compared to the 2012 network with the addition of just one MTC; redistribution of the 21 MTCs in the 2012 network led to a 30.4% improvement. Our second contribution (Chapter 3) introduces a Nested Trauma Network Design Problem (NTNDP), which is a nested multi-level, multi-customer, multi-transportation, multi-criteria, capacitated model. The NTNDP model has a bi-objective of maximizing the weighted sum of equity and effectiveness in patient safety. The proposed model includes intermediate trauma centers (TCs) that have been established in many US states to serve as feeder centers to major TCs. The model also incorporates three criteria used by EMS for destination determination; i.e., patient/family choice, closest facility, and protocol. Our proposed ‘3-phase’ approach efficiently solves the resulting MIP model by first solving a relaxed version of the model, then a Constraint Satisfaction Problem, and a modified version of the original optimization problem (if needed). A comprehensive experimental study is conducted to determine the sensitivity of the solutions to various system parameters. A case study is presented using 2019 data from the state of OH that shows more than 30% improvement in the patient safety objective. In our third contribution (Chapter 4), we introduce Trauma Network Design Problem considering Assessment-related Mistriages (TNDP-AM), where we explicitly consider mistriages in on-scene assessment of patient injuries by the EMS. The TNDP-AM model determines the number and location of major trauma centers to maximize patient safety. We model assessment-related mistriages using the Bernoulli random variable and propose a Simheuristic approach that integrates Monte Carlo Simulation with a genetic algorithm (GA) to solve the problem efficiently. Our findings indicate that the trauma network is susceptible to assessment-related mistriages; specifically, higher mistriages in assessing severe patients may lead to a 799% decrease in patient safety and potential clustering of MTCs near high trauma incidence rates. There are several implications of our findings to practice. State trauma decision-makers can use our approaches to not only better manage limited financial resources, but also understand the impact of changes in operational parameters on network performance. The design of training programs for EMS providers to build standardization in decision-making is another advantage
    • 

    corecore